
Version 1.1

Windows HLLAPI
Specification

Greg Millard Digital Communications Associates, Inc.
Sean Grinslade Attachmate Corporation
David Fuchs Wall Data Incorporated
Preston Sights Synapse Communications
Michael Lee NetSoft
Gordon Mangione Microsoft Corporation

Microsoft Corporation

The specification was developed by the companies listed below (collectively, “Developers”). Although
it is publicly available and is not confidential, the specification is still protected by copyright laws.
Additional copies of the specification can be obtained on the MSDR forum on CompuServe®
Information Services in Library 2.

This document is for informational purposes only. THE DEVELOPERS DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. THE DEVELOPERS MAKE NO
WARRANTY OR REPRESENTATION WITH RESPECT TO THIS SPECIFICATION, ITS
QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. THE DEVELOPERS SHALL HAVE NO LIABILITY FOR SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RESULTING FROM THE USE OR
MODIFICATION OF THIS SPECIFICATION.

© 1993 Microsoft Corporation, Digital Communications Associates, Inc., Attachmate Corporation,
Wall Data Incorporated, Synapse Communications, and NetSoft. All rights reserved.

Microsoft, MS and MS-DOS are registered trademarks and Windows is a trademark of Microsoft
Corporation in the USA and other countries.

U.S. Patent No. 4955066

CompuServe is a registered trademark of CompuServe, Inc.
DEC and VAX are registered trademarks of Digital Equipment Corporation.
IBM and OS/2 are registered trademarks of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.

5

Contents

Chapter 1 Introduction 1
Windows HLLAPI Overview 1
IBM EHLLAPI 1

Microsoft Windows Graphical Environment and Windows Specific Extensions
2

Chapter 2 Programming with Windows HLLAPI 3
WinHLLAPI Installation Checking 3
Byte Ordering 3

Deviation from IBM EHLLAPI 3
Window Handle Passed for Each Async Call 4
Pointers 4
Blocking Routines 4

Chapter 3 Windows HLLAPI Functions 5
Windows Calls 6

Prerequisite Calls 7
5250 Emulation Support 8

Change Presentation Space Window Name—Function 105 10
Connect Presentation Space — Function 1 12
Connect Window Services—Function 101 13
Convert Position / RowCol—Function 99 14
Copy Field to String—Function 34 15
Copy OIA—Function 13 17

OIA Group Indicator Meanings for 5250 Sessions 22
Copy Presentation Space—Function 5 25
Copy Presentation Space to String—Function 8 27
Copy String to Field—Function 33 29
Copy String to Presentation Space—Function 15 31
Disconnect Presentation Space—Function 2 33
Disconnect Window Services—Function 102 34
Find Field Length—Function 32 35
Find Field Position—Function 31 37
Get Key—Function 51 39
Pause—Function 18 41
Post Intercept Status—Function 52 42

6 Windows HLLAPI Functions

Query Close Intercept—Function 42 43
Query Cursor Location—Function 7 44
Query Field Attribute—Function 14 45
Query Host Update—Function 24 46
Query Session Status—Function 22 47
Query Sessions—Function 10 49
Query System—Function 20 50
Query Window Coordinates—Function 103 51
Receive File—Function 91 52

Asynchronous Mode 53
Release—Function 12 54
Reserve—Function 11 55
Reset System—Function 21 56
Search Field—Function 30 57
Search Presentation Space—Function 6 59
Send File—Function 90 61
Send Key—Function 3 63
Set Cursor—Function 40 67
Set Session Parameters—Function 9 68

STRLEN/STREOT 70
EOT=c 70
SRCHALL/SRCHFROM 71
SRCHFRWD/SRCHBKWD 71
NOATTRB/ATTRB 71
FPAUSE/IPAUSE 72
NOQUIET/QUIET 72
TIMEOUT=0/TIMEOUT=c 72
ESC=c 73
AUTORESET/NORESET 73
TWAIT/LWAIT/NWAIT 74
TRON/TROFF 74
EAB/NOEAB 74
XLATE/NOXLATE 75
CONLOG/CONPHYS 75
OLDOIA/NEWOIA 75
NOCFGSIZE/CFGSIZE 75
DISPLAY/NODISPLAY 76
WRITE_SUPER/WRITE_WRITE/WRITE_READ/WRITE_NONE/SUPE
R_WRITE/READ_WRITE 76

Chapter 1 Introduction 7

NOKEY/KEY$nnnnnnnn 77
Start Close Intercept—Function 41 78
Start Host Notification—Function 23 80
Start Keystroke Intercept—Function 50 82
Stop Close Intercept—Function 43 84
Stop Host Notification—Function 25 85
Stop Keystroke Intercept—Function 53 86
Wait—Function 4 87
Window Status—Function 104 89

Chapter 4 Extensions for the Windows Environment 93
WinHLLAPIAsync() 94

Windows HLLAPI Supplier Notes 94
WinHLLAPICleanup() 95

Windows HLLAPI Supplier Notes 95
WinHLLAPIIsBlocking() 96

Windows HLLAPI Supplier Notes 96
WinHLLAPICancelAsyncRequest() 97
WinHLLAPICancelBlockingCall() 98
WinHLLAPIStartup() 99

Windows HLLAPI Supplier Notes 101
WinHLLAPISetBlockingHook() 102

Windows HLLAPI Supplier Notes 103
WinHLLAPIUnhookBlockingHook() 104

Appendix A WHLLAPI.H - Definitions / Declarations for the Windows HLLAPI
Specification 105

Appendix B Attributes 111
Character Attributes 112
Character Color Attributes 113
Field Attributes 114

Appendix C Extended Windows HLLAPI Functions 117
Allocate Communications Buffer—Function 123 118
Connect Structured Fields—Function 120 120
Disconnect Structured Fields—Function 121 123
Free Communications Buffer—Function 124 125
Get Request Completion—Function 125 126
Lock Presentation Space API—Function 60 130

8 Windows HLLAPI Functions

Lock Window Services API—Function 61 132
Query Communication Buffer Size—Function 122 133
Read Structured Fields—Function 126 135
Storage Manager—Function 17 140

Get Storage 141
Free Storage 141
Free All Storage 142
Query Free Storage 142

Write Structured Fields—Function 127 143

Appendix D Query Reply Data Structures for Windows HLLAPI 149
The DDM Query Reply 150
DDM Application Name Self-Defining Parameter 150
PCLK Protocol Controls Self-Defining Parameter 151
Base DDM Query Reply Formats 151
The IBM Auxiliary Device Query Reply 153
Direct Access Self-Defining Parameter 155
PCLK Protocol Controls Self-Defining Parameter 155
The OEM Auxiliary Device Query Reply 156
Direct Access Self-Defining Parameter 156
PCLK Protocol Controls Self-Defining Parameter 157
The Cooperative Processing Requester Query Reply 158
The Product Defined Query Reply 159
Direct Access Self-Defining Parameter 160
The Document Interchange Architecture Query Reply 161
Direct Access Self-Defining Parameter 162

Chapter 1 Introduction 9

C H A P T E R 1

Windows HLLAPI Overview
Windows™ HLLAPI defines a standard and consistent IBM® EHLLAPI-style API for the 16- and
32-bit versions of the Microsoft® Windows graphical environment. It encompasses both familiar IBM
EHLLAPI-style routines and a set of Windows-specific extensions designed to allow the programmer
to take advantage of the message-driven nature of the Windows graphical environment.
This API has been designed to provide a standard to which application developers can program and
network software vendors can conform. These API details constitute documentation for application
software developers and a specification for network software vendors.
Network software that conforms to this Windows HLLAPI specification will be considered “Windows
HLLAPI Compliant.” To be Windows HLLAPI Compliant, a vendor must implement 100% of this
Windows HLLAPI specification (functions listed in Appendix C - Extended Windows HLLAPI
Functions are not required for compliancy). Suppliers of such interfaces shall be referred to as
“Windows HLLAPI Suppliers.”
Applications that are capable of exploiting any Windows HLLAPI implementation will be considered
as having a “Windows HLLAPI Interface” and will be referred to as “Windows HLLAPI
Applications.”

IBM EHLLAPI
Windows HLLAPI has been built on the de facto IBM EHLLAPI programming standard. Windows
HLLAPI is intended to provide maximum programming familiarity and to allow the simplified porting
of existing EHLLAPI-based source code. The Windows HLLAPI is consistent with release 1.0 of IBM
Extended Services for OS/2® EHLLAPI Programming Reference.

Microsoft Windows Graphical Environment and
Windows Specific Extensions
This API has been designed for ALL implementations and versions of the Windows environment from
and including version 3.0. It thus provides for Windows HLLAPI implementations and Windows
HLLAPI applications in both 16- and 32-bit operating environments.
Windows HLLAPI makes provisions for multithreaded Windows-based processes, where a process
contains one or more threads of execution. In the Win16 non-multithreaded world, a task corresponds
to a process with a single thread. All references to threads in this document refer to actual “threads” in
multithreaded Windows environments. In non-multithreaded environments (such as version 3.0), use
of the term thread refers to a Windows process.
The extensions to the Windows environment included in Windows HLLAPI are provided for maximum
programming compatibility among Windows version 3.x and Windows NT™ and optimum application
performance in both environments.

Introduction

10 Windows HLLAPI Functions

C H A P T E R 2

WinHLLAPI Installation Checking
To detect the presence of any Windows HLLAPI implementations on a system, an application that has
been linked with the Windows HLLAPI Import Library can attempt to call the WinHLLAPIStartup()
routine. Alternately, an application can examine the $PATH environment variable to search for
instances of Windows HLLAPI API implementations (WHLLAPI.DLL). For each instance, it can issue
a LoadLibrary() call and use the WinHLLAPIStartup() routine to discover implementation-specific
data.
This version of the Windows HLLAPI API specification does not attempt to address explicitly the issue
of multiple stacks/multiple concurrent Windows HLLAPI implementations. Nothing in the
specification should be interpreted as restricting multiple WinHLLAPI DLLs from being present and
from being used concurrently by one or more Windows HLLAPI application.

Byte Ordering
The Intel® byte ordering is like that of the DEC® VAX® and so differs from the Internet and 68000-
type processor byte ordering. Take care in your programming to ensure the correct orientation.

Deviation from IBM EHLLAPI
There are a few limited instances where Windows HLLAPI diverts from strict adherence to the IBM
EHLLAPI conventions. This deviation is due to the nature of the Windows graphical environment and
the way it differs from other HLLAPI platforms.
Error constants are consistent with IBM EHLLAPI to maintain backward compatibility with existing
software.

Window Handle Passed for Each Async Call
A Window handle has been added as the first parameter passed to the WinHLLAPIAsync entry point.
This allows the WinHLLAPIAsync implementation to distinguish between HLLAPI applications.

Pointers
All pointers used by applications with WHLLAPI should be FAR.

Blocking Routines
Although blocking functions are supported with Windows HLLAPI, you should not use them. Instead
you should use the WinHLLAPIAsync function in conjunction with a WinHLLAPIAsync Windows
message.

Programming with
Windows HLLAPI

Chapter 3 Windows HLLAPI Functions 11

C H A P T E R 3

Windows HLLAPI functions are requested using the appropriate parameter within the WinHLLAPI()
call, and by specifying the function constant (or number equivalent) and the call parameters specific to
that function. This chapter details the supported Windows HLLAPI functions, describing each function
and their corresponding parameters and return codes. The supported functions are:

1 Connect Presentation Space
2 Disconnect Presentation Space
3 Send Key
4 Wait
5 Copy Presentation Space
6 Search Presentation Space
7 Query Cursor Location
8 Copy Presentation Space to

String
9 Set Session Parameters

10 Query Sessions
11 Reserve
12 Release
13 Copy OIA
14 Query Field Attribute
15 Copy String to Presentation Space
18 Pause
20 Query System
21 Reset System
22 Query Session Status
23 Start Host Notification
24 Query Host Update
25 Stop Host Notification

30 Search Field
31 Find Field Position
32 Find Field Length
33 Copy String to Field
34 Copy Field to String
40 Set Cursor Position
41 Start Close Intercept
42 Query Close Intercept
43 Stop Close Intercept

50 Start Keystroke Intercept
51 Get Key
52 Post Intercept Status
53 Stop Keystroke Intercept
90 Send File
91 Receive File
99 Convert Position / RowCol

101 Connect Window Services
102 Disconnect Window Services
103 Query Window Coordinates
104 Window Status
105 Change Switch List LT Name
106 Change PS Window Name

Windows HLLAPI Functions

Contents xiii

Windows Calls
The WinHLLAPI() call requires you to specify four parameters in every call and has the following
format:
extern VOID FAR PASCAL WinHLLAPI()

LPWORD lpwFunction, /* Function name */

LPBYTE lpbyString, /* String pointer */

LPWORD lpwLength, /* String (data) length */

LPWORD lpwReturnCode); /* Return code */

The parameters used in the WinHLLAPI function calls are:

Parameter Description

lpwFunction A pointer to the defined function name of the WinHLLAPI
function call. It has a corresponding constant which you can find
in WHLLAPI.H. To avoid additional complexity, the function
prototype definitions for each function will list the constant instead
of correctly listing a pointer to a word containing the function
number.

lpbyString A pointer to the Data String used by most Windows HLLAPI
functions. Not all functions require a Data String. Some functions
only use the Data String on the call (to pass data to
WinHLLAPI), some only on the return (passing data back to
your Windows HLLAPI application), and some on both the call
and return.

lpwLength This is a pointer to the Data Length, or it is the length of the Data
String, depending on the particular Windows HLLAPI function
call. Not all functions require a Data Length. Some functions only
use the Data Length on the call (to pass a value to WinHLLAPI),
some only on the return (passing a value back to your Windows
HLLAPI application).

lpwReturnCode A pointer to the return code. It indicates the status of the function
request and is passed on the return from the function. Some
functions, however, use this parameter on the call to indicate a
position in the Host session presentation space. In this situation,
the same parameter is referred to as “PS Position” on the call and
“Return Code” on the return.

Call Parameter
Definitions

xiv Contents

Prerequisite Calls
Most Windows HLLAPI functions require a prerequisite callanother function that must be called and
successfully completed before the desired call can be issued. The following table lists the Windows
HLLAPI functions and their prerequisite calls. “None” indicates that the function has no prerequisite
call.

Function (Function Number) Prerequisite Call (Function Number)

Connect Presentation Space (1) None

Disconnect Presentation Space (2) Connect Presentation Space (1)

Send Key (3) Connect Presentation Space (1)

Wait (4) Connect Presentation Space (1)

Copy Presentation Space (5) Connect Presentation Space (1)

Search Presentation Space (6) Connect Presentation Space (1)

Query Cursor Location (7) Connect Presentation Space (1)

Copy Presentation Space to String (8) Connect Presentation Space (1)

Set Session Parameters (9) None

Query Sessions (10) None

Reserve (11) Connect Presentation Space (1)

Release (12) Connect Presentation Space (1)

Copy OIA (13) Connect Presentation Space (1)

Query Field Attribute (14) Connect Presentation Space (1)

Copy String to Presentation Space (15) Connect Presentation Space (1)

Pause (18) None

Query System (20) None

Reset System (21) None

Query Session Status (22) None

Start Host Notification (23) None

Query Host Update (24) Start Host Notification (23)

Stop Host Notification (25) Start Host Notification (23)

Search Field (30) Connect Presentation Space (1)

Find Field Position (31) Connect Presentation Space (1)

Find Field Length (32) Connect Presentation Space (1)

Copy String to Field (33) Connect Presentation Space (1)

Copy Field to String (34) Connect Presentation Space (1)

Set Cursor (40) Connect Presentation Space (1)

Start Close Intercept (41) None

Query Close Intercept (42) Start Close Intercept (41)

Contents xv

Function (Function Number) Prerequisite Call (Function Number)

Stop Close Intercept (43) Start Close Intercept (41)

Start Keystroke Intercept (50) None

Get Key (51) Start Keystroke Intercept (50)

Post Intercept Status (52) Start Keystroke Intercept (50)

Stop Keystroke Intercept (53) Start Keystroke Intercept (50)

Send File (90) None

Receive File (91) None

Convert Position / RowCol (99) None

Connect Window Services (101) None

Disconnect Window Services (102) Connect Window Services (101)

Query Window Coordinates (103) Connect Window Services (101)

Window Status (104) Connect Window Services (101)

Change PS Window Name (105) Connect Window Services (101)

Some functions use the Return Code to pass a value to the call. This value is
the Host session presentation space position. Although the parameter is listed as
lpwReturnCode in the call syntax, the function listings in this Chapter refer to this
parameter as PS Position on the call and Return Code on the return.

5250 Emulation Support
Most Windows HLLAPI functions are supported for both 3270 and 5250 emulators. The following
functions are not supported for 5250 emulation:

Start Close Intercept (41)

Query Close Intercept (42)

Stop Close Intercept (43)

Send File (90)

Receive File (91)

Connect Window Services (101)

Disconnect Window Services (102)

Query Window Coordinates (103)

Window Status (104)

Change Presentation Space Window Name (105)

Connect Structured Fields (120)

Note

xvi Contents

Disconnect Structured Fields (121)

Query Communications Buffer Size (122)

Allocate Communications Buffer (123)

Free Communications Buffer (124)

Get Request Completion (125)

Read Structured Fields (126)

Write Structured Fields (127)

Contents xvii

Change Presentation Space Window Name—
Function 105

This function allows the application to specify a new name for the presentation space window or reset
the presentation space window to the default name.

Prerequisite Functions
Connect Window Services (function 101).
WinHLLAPI(CHANGEPSNAME,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String Window name - a 17-byte string with the following
format:

Byte 1 Short name session ID, or space or null for
the current session.

Byte 2 A change request option value, select one
of the following:
WHLL_CHANGEPSNAME_SET.
Change the window name.
WHLL_CHANGEPSNAME_RESET.
Reset the window name.

Bytes 3-63 An ASCII string of 1 to 61 bytes including
a terminator byte. The ASCII string must
end with a NULL character. This string
must contain a least one non-NULL
character followed by a NULL character.

Data Length 3-63.

PS Position NA

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected for window services.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLPSENDED The session stopped.

Function Call

Call Parameters

Return Codes

xviii Contents

A string is ended at the first NULL character found. The NULL character overrides the specified string
length. If the NULL character is not at the end of the specified length, the last byte at the specified
length is replaced by a NULL character and the remainder of the Data String is lost. If the NULL
character is found before the specified length, the string is truncated at that point and the remainder of
the Data String is lost. This function is not supported for 5250 emulation.

Remarks

Contents xix

Connect Presentation Space — Function 1
This function establishes a connection between a specified presentation space (session) on the Host
and your Windows HLLAPI application.

Prerequisite Functions
None.
WinHLLAPI(CONNECTPS,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String One-character short name session ID of the Host session to
connect with, either an upper- or lower-case letter.

Data Length NA (defaults to 1).

PS Position NA

Code Description

WHLLOK Connect request successful and the specified session is
unlocked and ready for input.

WHLLNOTCONNECTED Connect request failed, specified short name session ID is
invalid.

WHLLPSBUSY Connect request successful, but the specified session is
busy.

WHLLINHIBITED Connect request successful, but the specified session is
locked (input inhibited).

WHLLSYSERROR Connect request failed due to a system error.

WHLLUNAVAILABLE Connect request failed, specified session is unavailable
(already in use).

When using the WinHLLAPI() call, you can only make connected sessions available to other
Windows HLLAPI applications by issuing a Disconnect Presentation Space call. Issuing a Reset
System call causes your Windows HLLAPI application to disconnect from all Host sessions.
Alternatively, your Windows HLLAPI application can share the Presentation Space by setting the
appropriate read/write parameters in the Set Session Parameters call (Function 9).

Function Call

Call Parameters

Return Codes

Remarks

xx Contents

Connect Window Services—Function 101
This function allows the application to manage the presentation space windows. Only one Windows
HLLAPI application at a time can be connected to a presentation space for window services.

Prerequisite Functions
None.
WinHLLAPI(CONNECTWINDOWSERVICES,lpbyString,

lpwLength,lpwReturnnCode)

Parameter Description

Data String One-character short name session ID of the presentation
space.

Data Length NA (defaults to 1).

PS Position NA

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLNOTSUPPORTED The function was not supported by the emulation program.

WHLLUNAVAILABLE The presentation space was being used by another function.

A Windows HLLAPI application may connect to more than one presentation space concurrently for
window services. More than one Windows HLLAPI application can share a presentation space, but the
applications must synchronize session usage. This function is not supported for 5250 emulation.

Function Call

Call Parameters

Return Codes

Remarks

Contents xxi

Convert Position / RowCol—Function 99
This function converts a Host session presentation space position into row and column values for the
PC display or converts PC display row and column values into a Host session presentation space
position.

Prerequisite Functions
None.
WinHLLAPI(CONVERT,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String A 2-byte string. The first byte is the short name session ID of the
Host session presentation space to convert. The second byte is “P”
to convert a position to row and column, “R” to convert row and
column to a position.

Data Length NA when byte 2 of Data String is “P,” row number when byte 2
of Data String is “R.”

PS Position Host session presentation space position value when byte 2 of
Data String is “P,” column number when byte 2 of Data String is
“R.”

Parameter Description

Data Length When byte 2 of Data String on the call is “P,” this value is the
row number. When byte 2 of Data String on the call is “R,” a
zero indicates an invalid row number on the call.

Code Description

WHLLOK Invalid column number on the call.

>0 When byte 2 of Data String on the call is “P,” this value is the
column number. When byte 2 of Data String on the call is “R,”
this value is the Host session presentation space position.

WHLLINVALIDPSID The function failed due to an invalid short name session ID or a
system error.

WHLLINVALIDRC Byte 2 in Data String on the call is invalid (neither “P” nor “R”).

If you need to determine the number of rows and columns that a Host session presentation space
supports, use Query Session Status (function 22).

Function Call

Call Parameters

Return Parameters

Return Codes

Remarks

xxii Contents

Copy Field to String—Function 34
This function copies the contents of a specified field in the Host session presentation space to a string.
You can use Copy Field to String for either protected or unprotected fields.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(COPYFIELDTOSTRING,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String Buffer to hold the copied field. If session option EAB is
set, must be defined at least twice the length of the field to
be copied.

Data Length Number of characters to copy.

PS Position The position in the Host session presentation space of the
field to be copied. This value may be any byte within the
field, since the copy always starts at the beginning of the
field.

Parameter Description

Data String Data copied from the specified field. The first byte of Data
String is the first byte in the specified field.

Code Description

WHLLOK The specified field was copied successfully.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLPARAMETERERROR One or more call parameters are invalid.

WHLLTRUNCATED The specified field was copied, but the data to be copied
and Data String were not the same size. If Data String is
smaller than the specified field, the remaining copy data is
truncated.

WHLLPOSITIONERROR PS Position is invalid.

WHLLSYSERROR The function failed due to a system error.

WHLLNOFIELD The Host session presentation space is unformatted.

Function Call

Call Parameters

Return Parameters

Return Codes

Contents xxiii

Position in the Host session presentation space is determined by starting in the upper left corner of the
screen display (row 1, column 1). At the end of each screen display row, the next Host session
presentation space position is column 1 of the following screen display row. This process continues
until the end of the Host session presentation space (screen display) is reached.
This function is affected by the session options EAB/NOEAB, ATTRB/NOATTRB,
DISPLAY/NODISPLAY, and XLATE/NOXLATE. See Set Session Parameters (function 9) for details.
These session options have the following effect:

Session Option Effect on this Function

NOATTRB Unknown values are translated into spaces.

ATTRB Unknown values are copied untranslated.

NOEAB Extended attribute bytes are not copied to the string.

EAB, XLATE Extended attribute bytes are copied and translated into
CGA colors.

EAB, NOXLATE Extended attribute bytes are returned.

DISPLAY Data in a non-display field is copied to the target buffer.

NODISPAY Data in a non-display field is copied as null characters to
the target buffer.

See Appendix B - Attributes for descriptions of character, character color, and field attributes
Information about the field to copy can be obtained with Find Field Position (function 31) and Find
Field Length (function 32). The field is copied into Data String beginning with the first byte of the
field and ends when one of the following occurs:
u The end of the field is reached.

u The end of Data String is reached.

Remarks

xxiv Contents

Copy OIA—Function 13
This function returns the Host session Operator Information Area (OIA).

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(COPYOIA,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String String buffer to hold the OIA. Must be defined for at least
103 bytes.

Data Length Length of Data String in characters.

PS Position NA

Parameter Description

Data String A 103-byte string containing a copy of the OIA.

Code Description

WHLLOK OIA copied successfully.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLPARAMETERERROR OIA not copied; Data Length contains an invalid value.

WHLLPSBUSY OIA copied successfully; Host session is busy.

WHLLINHIBITED OIA copied successfully; Host session is locked (input
inhibited).

WHLLSYSERROR The function failed due to a system error.

The 103-byte string returned in Data String contains three areas of information, as follows:

Byte 1 OIA format, “1” for 3270 or “9” for 5250.

Bytes 2-81 OIA image in binary format.

Bytes 82-103 OIA group indicator meanings. Unused positions are set to
00h.

Function Call

Call Parameters

Return Parameters

Return Codes

Remarks

Contents xxv

The 5250 OIA image is always returned in ASCII. The 3270 OIA image will
be returned in one of the following states depending on Set Session Parameter (9):

OLDOIA OIA image returned in 3270 PC format.

NEWOIA OIA image returned in ASCII format.

Group 1: Online and screen ownership

1 byte (Data String position 82) applies to Data String position 2

Bits 0-1 Reserved

Bit 2 SSCP-LU session owns screen

Bit 3 LU-LU session owns screen

Bit 4 Online and not owned

Bit 5 Subsystem ready

Bits 6-7 Reserved

Note

3270 Host
Presentation
Space Character
Table

OIA Group
Indicator
Meanings for 3270
Sessions

xxvi Contents

Group 2: Character selection

1 byte (Data String position 83) applies to Data String position 37

Bit 0 Reserved

Bit 1 APL

Bits 2-7 Reserved

Group 3: Shift state

1 byte (Data String position 84) applies to Data String position 43

Bit 0 Upper shift

Bit 1 Numeric

Bits 2-7 Reserved

Group 4: PSS group 1
1 byte (Data String position 85) not used (reserved)
Group 5: Highlight group 1

1 byte (Data String position 86) applies to Data String position 48

Bit 0 User-selectable

Bit 1 Field inherit

Bits 2-7 Reserved

Group 6: Color group 1

1 byte (Data String position 87) applies to Data String position 50

Bit 0 User-selectable

Bit 1 Field inherit

Bits 2-7 Reserved

Group 7: Insert

1 byte (Data String position 88) applies to Data String position 53

Bit 0 Insert mode

Bit 1-7 Reserved

Contents xxvii

Group 8: Input inhibited
5 bytes (Data String positions 89-93) apply to Data String position 10 (except where
noted)

Byte 1 (Data String position 89)

Bit 0 Non-resetable machine check

Bit 1 Reserved

Bit 2 Machine check

Bit 3 Communications check

Bit 4 Program check

Bit 5 Reserved

Bit 6 Device not working

Bit 7 Reserved

Byte 2 (Data String position 90)

Bit 0 OIA time

Bit 1 Terminal wait

Bit 2 Reserved

Bit 3 Minus function

Bit 4 Too much entered

Bits 5-7 Reserved

Byte 3 (Data String position 91)

Bit 0 Reserved

Bit 1 User-unauthorized

Bit 2 User-unauthorized, minus function

Bit 3 Invalid dead key combination

Bit 4 Wrong place

Bits 5-7 Reserved

Byte 4 (Data String position 92)

Bits 0-1 Reserved

Bit 2 System wait

Bits 3-7 Reserved

Byte 5 (Data String position 93)

Bits 0-7 Reserved

xxviii Contents

Group 9: PSS group 2
1 byte (Data String position 94) not used (reserved)
Group 10: Highlight group 2

1 byte (Data String position 95)

Bit 0 Selected

Bit 1-7 Reserved

Group 11: Color group 2

1 byte (Data String position 96)

Bit 0 Selected

Bit 1-7 Reserved

Group 12: Communication error reminder applies to Data String position 23

1 byte (Data String position 97)

Bit 0 Communications error

Bit 1-7 Reserved

Group 13: Printer status applies to Data String position 62

1 byte (Data String position 98)

Bit 0 Reserved

Bit 1 Printer malfunction

Bit 2 Printer printing

Bit 3 Printer assignment

bit 4-7 Reserved

Group 14: Graphics
1 byte (Data String position 99) not used (reserved)
Group 15: Not used
1 byte (Data String position 100) not used (reserved)
Group 16: Autokey play/record status
1 byte (Data String position 101) not used (reserved)
Group 17: Autokey abort/pause status
1 byte (Data String position 102) not used (reserved)
Group 18: Enlarge state
1 byte (Data String position 103) not used (reserved)

Contents xxix

OIA Group Indicator Meanings for 5250 Sessions
Group 1: Online and screen ownership

1 byte (Data String position 82) applies to Data String position 19

Bits 0-2 Reserved

Bit 3 System available

Bit 4 Reserved

Bit 5 Subsystem ready

Bits 6-7 Reserved

Group 2: Character selection

1 byte (Data String position 83) applies to Data String position 44

Bits 0-4 Reserved

Bit 5 Diacritic mode

Bit 6-7 Reserved

Group 3: Shift state

1 byte (Data String position 84) applies to Data String position 39

Bits 0 Reserved

Bit 1 Keyboard Shift

Bits 2-7 Reserved

Group 4: PSS group 1
1 byte (Data String position 85) not used (reserved)
Group 5: Highlight group 1
1 byte (Data String position 86) not used (reserved)
Group 6: Color group 1
1 byte (Data String position 87) not used (reserved)
Group 7: Insert

1 byte (Data String position 88) applies to Data String position 49

Bit 0 Insert mode

Bits 1-7 Reserved

xxx Contents

Group 8: Input inhibited
5 bytes (Data String positions 89-93) apply to Data String position 58 (except where
noted)

Byte 1 (Data String position 89)

Bit 0-7 Reserved

Byte 2 (Data String position 90)

Bit 0-7 Reserved

Byte 3 (Data String position 91)

Bits 0-4 Reserved

Bit 5 User input error (II)

Bits 3-7 Reserved

Byte 4 (Data String position 92)

Bits 0-1 Reserved

Bit 2 System wait

Bits 3-7 Reserved

Byte 5 (Data String position 93)

Bits 0-7 Reserved

Bit 5 User input error (II)

Bits 3-7 Reserved

Group 9: PSS group 2
1 byte (Data String position 94) not used (reserved)
Group 10: Highlight group 2
1 byte (Data String position 95) not used (reserved)
Group 11: Color group 2
1 byte (Data String position 96) not used (reserved)
Group 12: Communication error reminder applies to Data String position 29

1 byte (Data String position 97)

Bit 0-6 Reserved

Bit 7 Message Waiting (MW)

Contents xxxi

Group 13: Printer status
1 byte (Data String position 98) not used (reserved)
Group 14: Graphics
1 byte (Data String position 99) not used (reserved)
Group 15: Not used
1 byte (Data String position 100) not used (reserved)
Group 16: Autokey play/record status
1 byte (Data String position 101) not used (reserved)
Group 17: Autokey abort/pause status
1 byte (Data String position 102) not used (reserved)
Group 18: Enlarge state
1 byte (Data String position 103) not used (reserved)

xxxii Contents

Copy Presentation Space—Function 5
This function copies the contents of the current Host session’s presentation space into a string buffer.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(COPYPS,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String String that will contain the Host session presentation space.
The string length must be defined as the maximum size of
the presentation space. If the session option EAB has been
set with Set Session Parameters (function 9), the string
length must be defined to be at least twice the size of the
presentation space.

Data Length NA (the length of the presentation space is assumed).

PS Position NA

Parameter Description

Data String String containing the Host session presentation space.

Code Description

WHLLOK Host session presentation space successfully copied to Data
String; the session is active and the keyboard is unlocked.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a session.

WHLLPSBUSY Host session presentation space successfully copied to Data
String; the session is waiting for a Host response.

WHLLINHIBITED Host session presentation space successfully copied to Data
String; the keyboard is locked.

WHLLSYSERROR The function failed due to a system error.

This function copies the entire Host session presentation space to the supplied string. To copy only a
portion of the presentation space, use Copy Presentation Space to String (function 8).

Function Call

Call Parameters

Return Parameters

Return Codes

Remarks

Contents xxxiii

This function translates characters from EBCDIC to ASCII. The translation depends on the setting of
the following session options:

Session Option Effect on this Function

NOATTRB Unknown values are translated into spaces.

ATTRB Unknown values are copied untranslated.

NOEAB Extended attribute bytes are not passed to the string.

EAB, XLATE Extended attribute bytes are passed and translated into CGA colors.

EAB, NOXLATE Extended attribute bytes are returned.

DISPLAY Data in non-display fields is copied to the target buffer.

NODISPLAY Data in non-display fields is copied a null characters to the target
buffer.

See Appendix B - Attributes for descriptions of character, character color, and field attributes

xxxiv Contents

Copy Presentation Space to String—Function 8
This function copies all or part of the Host session presentation space into a string buffer.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(COPYPSTOSTR,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String String that will contain the specified portion of the Host
session presentation space.

Note: If the EAB option is set under Set Session
Parameters (9) to include extended attribute bytes in the
copy, the string must be defined as at least twice the size of
the presentation space that is copied.

Data Length Number of characters.

PS Position Position in the Host session presentation space where the
copying is to begin. Must be greater than zero and less than
or equal to the maximum size of the Host session
presentation space.

Parameter Description

Data String String containing the specified portion of the Host session
presentation space.

Code Description

WHLLOK The specified portion of the Host session presentation space
successfully copied to Data String; the session is active and
the keyboard is unlocked.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a session.

WHLLPARAMETERERROR Data Length of zero specified.

WHLLPSBUSY The specified portion of the Host session presentation space
successfully copied to Data String; the session is waiting
for a Host response.

WHLLINHIBITED The specified portion of the Host session presentation space
successfully copied to Data String; the keyboard is locked.

WHLLPOSITIONERROR PS Position value specified is invalid.

WHLLSYSERROR The function failed due to a system error.

Function Call

Call Parameters

Return Parameters

Return Codes

Contents xxxv

PS Position in the Host session presentation space is determined by starting in the upper left corner of
the screen display (row 1, column 1). At the end of each screen display row, the next Host session
presentation space position is column 1 of the following screen display row. This process continues
until the end of the Host session presentation space (screen display) is reached.
Character translation from EBCDIC to ASCII is performed by the Copy Presentation Space to String
function. The translation depends on the setting of the following session options:

Session Option Effect on this Function

NOATTRB Unknown values are translated into spaces.

ATTRB Unknown values are copied untranslated.

NOEAB Extended attribute bytes are not copied to the string.

EAB, XLATE Extended attribute bytes are copied and translated into CGA colors.

EAB, NOXLATE Extended attribute bytes are returned.

DISPLAY Data in non-display fields is copied to the target buffer.

NODISPLAY Data in non-display fields is copied as null characters to the target
buffer.

See Appendix B - Attributes for descriptions of character, character color, and field attributes

Remarks

xxxvi Contents

Copy String to Field—Function 33
This function copies a string into the specified field in the Host session presentation space.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(COPYSTRINGTOFIELD,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String String to copy to the specified field.

Data Length Number of characters. NA if session option EOT is
specified.

PS Position The position in the Host session presentation space of the
field to copy Data String to. This value can be any byte
within the field, since the copy always starts at the
beginning of the field.

Code Description

WHLLOK The string was copied successfully.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLPARAMETERERROR Data Length invalid (set to zero).

WHLLINHIBITED The specified field is protected, or attempted to copy
invalid data (such as a field attribute).

WHLLTRUNCATED The string was copied successfully, but one or more
characters were truncated.

WHLLPOSITIONERROR PS Position is invalid.

WHLLSYSERROR The function failed due to a system error.

WHLLNOFIELD The Host session presentation space is unformatted.

Position in the Host session presentation space is determined by starting in the upper left corner of the
screen display (row 1, column 1). At the end of each screen display row, the next Host session
presentation space position is column 1 of the following screen display row. This process continues
until the end of the Host session presentation space (screen display) is reached.
This function is affected by the session options STRLEN/STREOT, EOT=c and EAB/NOEAB. See Set
Session Parameters (function 9) for details on these session options.
Data String is copied to the specified field, starting with the first position of the field, until one of the
following occurs:
u The end of the field is encountered.

u If the EOT session option is set and an EOT is encountered.

u If the EOT session option is not set and the number of characters specified by
Data Length have been copied.

Function Call

Call Parameters

Return Codes

Remarks

Contents xxxvii

Copy String to Presentation Space—Function 15
This function copies an ASCII string directly to a specified position in the Host session presentation
space.

Prerequisite Functions
Connect Presentation Space (function 1)
WinHLLAPI(COPYSTRTOPS,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String String of ASCII data to copy to the Host session
presentation space.

Data Length Number of characters. NA if session option EOT is
specified.

PS Position Position in the Host session presentation space where
Data String is to be copied.

Code Description

WHLLOK Data String successfully copied.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLPARAMETERERROR Data Length has a value of zero (invalid).

WHLLINHIBITED The Host session presentation space is protected or
inhibited, or Data String contains illegal data (such as a
field attribute byte).

WHLLTRUNCATED Data String was truncated during the copy (partial
copy).

WHLLPOSITIONERROR PS Position is an invalid value.

WHLLSYSERROR The function failed due to a system error.

Position in the Host session presentation space is determined by starting in the upper left corner of the
screen display (row 1, column 1). At the end of each screen display row, the next Host session
presentation space position is column 1 of the following screen display row. This process continues
until the end of the Host session presentation space (screen display) is reached.
This function is affected by the session options STRLEN/STREOT and EOT=c. If the session option
STREOT has been specified, the copy string ends when an EOT is encountered in Data String. See Set
Session Parameters (9) for details.
This function is similar to, but faster than, Send Key (3). However, keyboard mnemonics that can be
sent with Send Key cannot be sent with this function.
Data String cannot be larger than the maximum size of the Host session presentation space.
5250 emulators supports a Presentation Space of 24 rows by 80 columns. When an error message from
the host or when the operator presses the SysReq key, a 25th row is displayed. When the row 25 is
displayed, it is a valid area for this function.

Function Call

Call Parameters

Return Codes

Remarks

xxxviii Contents

Disconnect Presentation Space—Function 2
This function disconnects a Host session from your Windows HLLAPI session.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(DISCONNECTPS,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String NA

Data Length NA

PS Position NA

Code Description

WHLLOK The disconnect is successful.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLSYSERROR The disconnect failed due to a system error.

After calling this function, other functions that require a connected session are not valid and should not
be called. The Windows HLLAPI application should disconnect from all connected sessions before
exiting.
This function does not reset the session parameters to their defaults. In order to reset the default values,
the Windows HLLAPI application must issue a Reset System (function 21).

Function Call

Call Parameters

Return Codes

Remarks

Contents xxxix

Disconnect Window Services—Function 102
This function disconnects window services between a Windows HLLAPI application and a specified
Windows HLLAPI session.

Prerequisite Functions
Connect Window Services (function 101).
WinHLLAPI(DISCONNECTWINDOWSERVICES,lpbyString,

lpwLength,lpwReturnnCode)

Parameter Description

Data String One-character short name session ID of the presentation
space.

Data Length NA (defaults to 1).

PS Position NA

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected for window services.

WHLLSYSERROR The function failed due to a system error.

After calling this function, other functions that require a connected session for window services are not
valid and should not be called. The Windows HLLAPI application should disconnect from all sessions
that have been connected for window services before exiting. This function is not supported for 5250
emulation.

Function Call

Call Parameters

Return Code

Remarks

xl Contents

Find Field Length—Function 32
This function determines the length of a specified field in the Host session presentation space. You can
use Find Field Length for either protected or unprotected fields but only in a field-formatted host
presentation space.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(FINDFIELDLENGTH,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String A 2-byte string that must be one of the following:

[space][space] This (current) field.

T[space] This (current) field.

P[space] Previous field (protected or
unprotected).

N[space] Next field (protected or
unprotected).

NP Next Protected field.

NU Next Unprotected field.

PP Previous Protected field.

PU Previous Unprotected field.

Data Length NA (length of 2 is implied).

PS Position The position in the Host session presentation space
where the find starts.

Data Length Description

0 If Return Code = 28, the field length is zero. If Return
Code = 24, the Host session presentation space is
unformatted.

>0 Length of the specified field. This value includes all
characters from the beginning of the specified field up to
the character preceding the next attribute byte.

Function Call

Call Parameters

Return Parameters

Contents xli

Code Description

WHLLOK The specified field length was found.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLPARAMETERERROR One or more of the call parameters are invalid.

WHLLPOSITIONERROR PS Position is invalid.

WHLLSYSERROR The function failed due to a system error.

WHLLNOFIELD The specified field was not found, or the Host session
presentation space is unformatted.

WHLLZEROLENFIELD The specified field has a length of zero.

Position in the Host session presentation space is determined by starting in the upper left corner of the
screen display (row 1, column 1). At the end of each screen display row, the next Host session
presentation space position is column 1 of the following screen display row. This process continues
until the end of the Host session presentation space (screen display) is reached.
5250 emulators supports a Presentation Space of 24 rows by 80 columns. When an error message from
the host or when the operator presses the SysReq key, a 25th row is displayed. When the row 25 is
displayed, it is a valid area for this function.

Return Codes

Remarks

xlii Contents

Find Field Position—Function 31
This function determines the starting position of a field in the Host session presentation space. You can
use Find Field Position for either protected or unprotected fields but only in a field-formatted host
presentation space.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(FINDFIELDPOSITION,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String A 2-byte string that must be one of the following:

[space][space] This (current) field.

T[space] This (current) field.

P[space] Previous field (protected or
unprotected).

N[space] Next field (protected or unprotected).

NP Next Protected field.

NU Next Unprotected field.

PP Previous Protected field.

PU Previous Unprotected field.

Data Length NA (length of 2 is implied).

PS Position The position in the Host session presentation space where
the find starts.

Data Length Description

0 If Return Code = 28, the field length is zero. If Return
Code = 24, the Host session presentation space is
unformatted.

>0 Starting position of the requested field.

Function Call

Call Parameters

Return Parameters

Contents xliii

Code Description

WHLLOK The specified field was found.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLPARAMETERERROR One or more of the call parameters are invalid.

WHLLPOSITIONERROR PS Position is invalid.

WHLLSYSERROR The function failed due to a system error.

WHLLNOFIELD The specified field was not found, or the Host session
presentation space is unformatted.

WHLLZEROLENFIELD The specified field has a length of zero.

Position in the Host session presentation space is determined by starting in the upper left corner of the
screen display (row 1, column 1). At the end of each screen display row, the next Host session
presentation space position is column 1 of the following screen display row. This process continues
until the end of the Host session presentation space (screen display) is reached.
5250 emulators supports a Presentation Space of 24 rows by 80 columns. When an error message from
the host or when the operator presses the SysReq key, a 25th row is displayed. When the row 25 is
displayed, it is a valid area for this function.

Return Codes

Remarks

xliv Contents

Get Key—Function 51
This function allows your Windows HLLAPI application to intercept keystrokes from Host sessions
that have keystroke intercept enabled, and to process those keystrokes.

Prerequisite Functions
Start Keystroke Intercept (function 50).
WinHLLAPI(GETKEY,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String An 8-byte string in the following format:

Byte 1 Short name session ID of the desired Host
session, or space or null for the current Host
session.

Bytes 2-8 Reserved for return data.

Data Length NA (length of 8 is implied).

PS Position NA.

Parameter Description

Data String An 8-byte string in the following format:

Byte 1 Short name session ID of the desired Host
session, or space or null for the current Host
session.

Byte 2 Keystroke code. “A” indicates an ASCII
character; “M” indicates a 3270 function
key code; “S” indicates a special key
modifier (SHIFT, CTRL, or ALT) state.

Bytes 3-8 Keystroke(s). Unused bytes are set to null
(00h). See “Remarks” section for details.

Data Length Number of characters in the returned mnemonic.

Code Description

WHLLOK Keystroke(s) successfully returned.

WHLLNOTCONNECTED The Host session presentation space is invalid.

WHLLINHIBITED Start Keystroke Intercept (function 50) was called with the
“D” option (intercept AID keys only). Non-AID keys are
not returned.

WHLLNOTAVAILABLE Start Keystroke Intercept (function 50) was not called
prior to this function call.

WHLLSYSERROR The function failed due to a system error.

Function Call

Call Parameters

Return Parameters

Return Codes

Contents xlv

Code Description

WHLLUNDEFINEDKEY The user entered an invalid key combination for this Host
session presentation space.

WHLLNOKEYSTROKES There are no keystrokes available in the keystroke queue.

WHLLKEYOVERFLOW The keystroke queue has overflowed and keystroke(s)
were lost.

This function is affected by the session options ESC=c and NWAIT/LWAIT/TWAIT. See Set Session
Parameters (function 9) for details. Of particular importance is the ESC=c session option: the escape
character may be set to something other than the default of the at sign (@), which is used in the
keystroke examples.
Keystrokes entered by the user are queued by WinHLLAPI. Use this function to read the keystrokes
from the queue one at a time. You can then use Send Key (function 3) to pass the original keystrokes
and/or any other keystrokes you want to send to the Host session presentation space.
The special key modifiers that can be returned indicate which key modifier is active:

@A ALT key active.

@S SHIFT key active.

@ CTRL key active.

The 3270 function key codes are defined under Send Key (function 3).

Returned Data String Examples
BAt “B” is the short name session ID of the Host session. Returned keystroke is

ASCII lowercase t (bytes 4-8 are null, 00h).

FM@2 “F” is the short name session ID of the Host session. Returned keystroke is
the 3270 function key code for PF@ (bytes 5-8 are null, 00h).

KS@Aa “K” is the short name session ID of the Host session. Returned keystroke with
special key modifier is ALT+A (bytes 6-8 are null, 00h).

MS@rA “M” is the short name session ID of the Host session. Returned keystroke
with special key modifier is CTRL+SHIFT+A (bytes 6-8 are null, 00h). Note
that because both the CTRL and SHIFT keys are active, only the CTRL key
modifier is indicated but the SHIFT key is implicitly defined by the uppercase
A.

Remarks

xlvi Contents

Pause—Function 18
This function causes your application to wait for a specified amount of time.

Prerequisite Functions
None.
WinHLLAPI(PAUSE,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String NA

Data Length Amount of time to pause in multiples of 0.5 seconds. For example,
a value of 240 signifies 2 minutes (120 seconds).

PS Position NA

Code Description

WHLLOK Pause completed (specified wait time has expired).

WHLLSYSERROR The function failed due to a system error. Any time results are
unpredictable.

WHLLPSCHANGED The OIA or presentation space of the Host session has been
updated. Use Query Host Update (function 24) for more
information.

You should use the Windows environment timer facility, WM_TIMER, instead of timing loops to wait
for an event to occur. Note that by calling Start Host Notification (function 23) before this function, a
Host event can terminate the Pause. When this happens, call Query Host Update (function 24) to
determine which session had the update and the type of update.
This function is affected by the FPAUSE/IPAUSE session options. See Set Session Parameters
(function 9) for details. If IPAUSE is set, the pending Host event satisfies the Pause call until Query
Host Update (function 24) is completed.

Function Call

Call Parameters

Return Codes

Remarks

Contents xlvii

Post Intercept Status—Function 52
This function notifies WinHLLAPI that a keystroke obtained with Get Key (function 51) has been
accepted or rejected. If rejected, a beep is generated.

Prerequisite Functions
Start Keystroke Intercept (function 50).
WinHLLAPI(POSTINTERCEPTSTATUS,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String A 2-byte string in the following format:

Byte 1 Short name session ID of the desired Host
session, or space or null for the current Host
session.

Byte 2 “A” to accept the keystroke; “R” to reject the
keystroke.

Data Length NA (length of 2 is implied).

PS Position NA.

Code Description

WHLLOK The notification is successful.

WHLLNOTCONNECTED The Host session presentation space is invalid.

WHLLPARAMETERERROR One or more of the call parameters are invalid.

WHLLNOTAVAILABLE Intercept (function 50) was not called prior to this function
call.

WHLLSYSERROR The function failed due to a system error.

Function Call

Call Parameters

Return Codes

xlviii Contents

Query Close Intercept—Function 42
This function allows the application to determine if the user selected to close the emulator program.

Prerequisite Functions
Start Close Intercept (function 41).
WinHLLAPI(QUERYCLOSEINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String One-character short name session ID of the presentation
space.

Data Length Must be specified.

PS Position NA

Code Description

WHLLOK A close intercept event did not occur.

WHLLNOTCONNECTED An invalid presentation space was specified.

WHLLPARAMETERERROR An invalid option was specified.

WHLLNOTAVAILABLE Start Close Intercept has not been called prior to this
function for the specified presentation space.

WHLLSYSERROR The function failed due to a system error.

WHLLPSENDED The session stopped.

WHLLPSCHANGED A close intercept event occurred.

This function is not supported for 5250 emulation.

Function Call

Call Parameters

Return Codes

Remarks

Contents xlix

Query Cursor Location—Function 7
This function determines the location of the cursor in the Host session presentation space.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(QUERYCURSORLOC,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String NA

Data Length NA

PS Position NA

Parameter Description

lpwLength Data Length: the position of the cursor in the Host session
presentation space.

Code Description

WHLLOK The cursor was successfully located.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected.

WHLLSYSERROR The function failed due to a system error

5250 emulators supports a Presentation Space of 24 rows by 80 columns. When an error message from
the host or when the operator presses the SysReq key, a 25th row is displayed. When the row 25 is
displayed, it is a valid area for this function.

Function Call

Call Parameters

Return Parameters

Return Codes

Remarks

l Contents

Query Field Attribute—Function 14
This function returns the attribute byte of the field containing the specified position in the Host session
presentation space.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(QUERYFIELDATTRIBUTE,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String NA

Data Length NA

PS Position A position in the Host session presentation space that is
within the field for which you want the attribute byte
returned.

Parameter Description

Data Length The attribute value if the screen is formatted. Zero if the
screen is not formatted.

Code Description

WHLLOK Field attribute found successfully.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLPOSITIONERROR Invalid value specified for PS Position.

WHLLSYSERROR The function failed due to a system error.

WHLLNOFIELD Field attribute not found due to unformatted Host session
presentation space.

Position in the Host session presentation space is determined by starting in the upper left corner of the
screen display (row 1, column 1). At the end of each screen display row, the next Host session
presentation space position is column 1 of the following screen display row. This process continues
until the end of the Host session presentation space (screen display) is reached.
You must examine the attribute byte to determine all of the current field attributes. See Appendix B -
Attributes for descriptions of field attributes

Function Call

Call Parameters

Return Parameters

Return Codes

Remarks

Contents li

Query Host Update—Function 24
This function determines if the presentation space, Operator Information Area (OIA), or both, of the
specified Host session have been updated since one of the following occurs:
u Start Host Notification (function 23) was called.

u The previous call of this function.

Prerequisite Functions
Start Host Notification (function 23).
WinHLLAPI(QUERYHOSTUPDATE,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String Short name session ID of the desired Host session, or space or
null for the current Host session.

Data Length NA (length of 1 is implied).

PS Position NA

Code Description

WHLLOK No updates.

WHLLNOTCONNECTED The Host session specified is invalid.

WHLLNOTAVAILABLE Start Host Notification (function 23) has not been called prior
to this function for the specified Host session.

WHLLSYSERROR The function failed due to a system error.

WHLLOIAUPDATE One or more updates to the OIA of the specified Host session.

WHLLPSUPDATE One or more updates to the presentation space of the specified
Host session.

WHLLBOTHUPDATE One or more updates to both the OIA and the presentation
space of the specified Host session.

Function Call

Call Parameters

Return Codes

lii Contents

Query Session Status—Function 22
This function accesses the status of a specified session.

Prerequisite Functions
None.
WinHLLAPI(QUERYSESSIONSTATUS,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String 18-byte string for returned session information; first byte is a
short name session ID of the session to query, or space or null for
the current session.

Data Length 18

PS Position NA

Parameter Description

Data String Session statusan 18-byte string with the following format:

Byte 1 Short name session ID.

Bytes 2-9 Long name session ID.

Byte 10 Session type: “D” for 3270 Host, “P” for
personal computer, “F” for 5250 host,
“G” for 5250 printer, and “E” for 3270
printer.

Byte 11 Sessions characteristics as a binary
number explained below:
0 EAB
1 PSS
2-7 Reserved
If bit 0 (EAB) = 0 the session has
base

attributes.
If bit 0 (EAB) =1 the session has

extended attributes
If bit 1 (PSS) = 0 the session does
not

support programmed

symbols.
if bit 1 (PSS)=1 the session
supports

programmed symbols.

Function Call

Call Parameters

Return Parameters

Contents liii

Bytes 12-13 Number of rows in the Host session
presentation space. This is a binary
number, not ASCII. If the session type is
“E” or “G” (printers), the value is binary
zero.

Parameter Description

Bytes 14-15 Number of columns in the Host session
presentation space. This is a binary
number, not ASCII. If the session type is
“E” or “G” (printers), the value is binary
zero.

Bytes 16-17 Host code page number, expressed as a
binary number.

Byte 18 Reserved.

Code Description

WHLLOK The requested session status is returned successfully.

WHLLNOTCONNECTED The requested session is invalid.

WHLLPARAMETERERROR Data Length is invalid.

WHLLSYSERROR The function failed due to a system error.

The rows and columns returned in Data String (positions 12-13 and 14-15) are the number of rows
and columns that correspond to the Model type.

Return Codes

Remarks

liv Contents

Query Sessions—Function 10
This function returns the number of Host screen sessions that are active, and a string containing
information on each of the Host screen sessions. Host printer sessions are not supported.

Prerequisite Functions
None.
WinHLLAPI(QUERYSESSIONS,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String String buffer to hold the information string. Must be
defined as 12*(number of active Host sessions) bytes.

Data Length 12*(number of active Host sessions).

Parameter Description

Data String 12-byte fields (one for each active Host 3270 session) with
session information, in the following format:

Byte 1 Short name session ID.

Bytes 2-9 Long name session ID.

Byte 10 Session Type (“H” for Host, “P” for
personal computer).

Bytes 11-12 Size of the presentation space expressed
as a binary number (not ASCII).

Data Length The number of active Host 3270 screen sessions.

Code Description

WHLLOK Call successful.

WHLLPARAMETERERROR Data Length is invalid.

WHLLSYSERROR The function failed due to a system error.

The return value of Data Length is set when the Return Code is 0 or 2. If you receive a Return Code of
2, use Data Length to recalculate the necessary value for the size of Data String (and the value for
Data Length on the call).
Depending on the Session parameter specified the presentation size will vary:

CFGSIZE The size of presentation space configured by the user.

NOCFGSIZE The current size of the presentation space at the time the call is issued.

Function Call

Call Parameters

Return Parameters

Return Codes

Remarks

Contents lv

Query System—Function 20
This function determines the level and version of WHLLAPI under which your Windows HLLAPI
application is running.

Prerequisite Functions
None.
WinHLLAPI(QUERYSYSTEM,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String Buffer for query data, must be defined for 35 bytes.

Data Length NA (length of 35 is implied).

PS Position NA

Parameter Description

Data String System statusa 35-byte string with the following format:

1 WinHLLAPI version number

2-3 WinHLLAPI level number

4-9 WinHLLAPI version date (mmddyy)

10-12 Reserved

13 Always “U”

14 Always “E”

15-16 WinHLLAPI product version number

17-18 WinHLLAPI product level number

19 Reserved

20-23 Reserved

24-27 Reserved

28-29 Reserved

30-31 Reserved

32 Reserved

33-35 Reserved

Code Description

WHLLOK The query completed successfully.

WHLLSYSERROR The function failed due to a system error.

Function Call

Call Parameters

Return Parameters

Return Codes

lvi Contents

Query Window Coordinates—Function 103
This function requests the window coordinates for a presentation space.

Prerequisite Functions
Connect Window Services (function 101).
WinHLLAPI(QUERYWINDOWCOORDINATES,lpbyString,

lpwLength,lpwReturnnCode)

Parameter Description

Data String 17-byte string for returned session information; first byte is a
short name session ID of the session to query, or space or
null for the current session.

Data Length NA (defaults to 17).

PS Position NA

Parameter Description

Data String Window coordinates - a 17-byte string with the following
format:

Byte 1 Short name session ID of the desired Host
session, or space or null for the current Host
session.

Bytes 2-5 Specifies the x-coordinate of the upper-left
corner of the window.

Bytes 6-9 Specifies the y-coordinate of the lower-right
corner of the window.

Bytes 10-13 Specifies the x-coordinate of the lower-right
corner of the window.

Bytes 14-17 Specifies the y-coordinate of the upper-left
corner of the window

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected for window services.

WHLLPSENDED The session stopped.

The window coordinates are returned in pixels. This function is not supported for 5250 emulation.

Function Call

Call Parameters

Return Parameters

Return Codes

Remarks

Contents lvii

Receive File—Function 91
This function transfers a file from the Host to the PC running the Windows HLLAPI application. The
file transfer can be synchronous (dedicated) or asynchronous (call-and-return). See the “Remarks”
section for information on asynchronous file transfer.

Prerequisite Functions
None.
WinHLLAPI(hWnd,RECEIVEFILE,lpbyString,lpwLength,

lpwReturnnCode)

WinHLLAPIAsync(hWnd,RECEIVEFILE,lpbyString,lpwLength,
lpwReturnnCode)

Parameter Description

Data String RECEIVE command parameters.

Data Length Length of Data String. NA if session option EOT is
specified.

PS Position NA.

Code Description

WHLLOK File transfer started successfully (asynchronous mode
only).

WHLLPARAMETERERROR Parameter error or Data Length is zero or greater
than 128.

WHLLFTXCOMPLETE The file transfer completed (synchronous mode only).

WHLLFTXSEGMENTED The file transfer completed with one or more
segmented records (synchronous mode only).

WHLLSYSERROR The function failed due to a system error.

WHLLFTXABORTED The file transfer aborted, either due to the user
entering CTRL+BREAK or (if a timeout was set by Set
Session Parameters, function 9) because the timeout
period expired.

WHLLINVALIDFUNCTIONNUM Invalid function number.

WHLLFILENOTFOUND PC file not found.

WHLLACCESSDENIED Access denied to PC file.

WHLLMEMORY Insufficient memory.

WHLLINVALIDENVIRONMENT Invalid environment.

WHLLINVALIDFORMAT Invalid format.

Function Call

Call Parameters

Return Codes

lviii Contents

This function is affected by the session options STRLEN/STREOT, EOT=c, QUIET/NOQUIET, and
TIMEOUT=0/TIMEOUT=c. See Set Session Parameters (function 9) for details.
You cannot use this function on 5250 sessions, 5250 printer sessions, and 3270 printer sessions. Only
one file transfer operation is supported at a time, regardless of the number of Host sessions accessed by
your Windows HLLAPI application.
Data String should contain the RECEIVE command parameters that you would normally enter at the
DOS prompt. For example, to receive the file SALES.RPT on your PC from the CMS file SLS REPRT
A on the Host session with the short name session ID of “E:”
u Data String SALES.RPT E:SLS REPRT A (ASCII CRLF

u Data Length 35
Asynchronous Mode

When asynchronous mode is enabled by calling WinHLLAPIAsync, this function initiates the file
transfer and immediately returns control to your Windows HLLAPI application. This frees your
application to perform other tasks while the file transfer is occurring.
Since asynchronous mode returns control immediately, you must use Windows version 3.x message
notification to determine the completion status of the file transfer. Use the RegisterWindowsMessage(
) function to register the message “WinHLLAPIAsyncFileTransfer”. The message notification is in the
format:
(wMsgID, wParm, lParm)

where

wMsgID Is the message ID returned by RegisterWindowsMessage.

wParm Is the status indicator: the high byte contains the short name session ID, the
low byte contains the status. If the low byte is two, the file transfer is still in
progress. If the low byte is three, the file transfer has completed.

lParm Depends upon the low byte value of wParm. If the low byte of wParm is
two (in progress), lParm is the number of bytes that have been transferred. If
the low byte of wParm is three (completed), lParm is the two-digit Host
TRANS code.

Remarks

Contents lix

Release—Function 12
This function releases the currently Connected Host session presentation space locked with Reserve
(function 11).

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(RELEASE,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String NA

Data Length NA

PS Position NA

Code Description

WHLLOK The Host session presentation space has been released
(unlocked).

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLSYSERROR The function failed due to a system error.

If you do not Release the Host session presentation space locked with Reserve (function 11), it remains
locked until one of the following occurs:
u Your Windows HLLAPI application calls Disconnect Presentation Space

(function 2).

u Your Windows HLLAPI application calls Reset System (function 21).

Function Call

Call Parameters

Return Codes

Remarks

lx Contents

Reserve—Function 11
This function reserves the currently Connected Host session presentation space, locking out the user
and preventing keyboard input.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(RESERVE,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String NA

Data Length NA

PS Position NA

Code Description

WHLLOK The Host session presentation space has been reserved
(locked).

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLINHIBITED The Host session is inhibited.

WHLLSYSERROR The function failed due to a system error.

Reserve locks out keyboard input. You can prevent the user from gaining access to the Host session
with this function. Once the Host session presentation space is reserved, it remains locked until one of
the following occurs:
u Your Windows HLLAPI application calls Release (function 12).

u Your Windows HLLAPI application calls Disconnect Presentation Space
(function 2).

u Your Windows HLLAPI application calls Reset System (function 21).

Function Call

Call Parameters

Return Codes

Remarks

Contents lxi

Reset System—Function 21
This function reinitializes the system to its default (start) state:
u All session options are reset to their defaults.

u Event notification is stopped.

u Any reserved sessions are released.

u Connected sessions are disconnected.

u The current status of Host sessions is updated.

Prerequisite Functions
None.
WinHLLAPI(RESETSYSTEM,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String NA

Data Length NA

PS Position NA

Code Description

WHLLOK The system has been reset.

WHLLSYSERROR The function failed due to a system error.

This function is normally used at the beginning and end of a Windows HLLAPI application to reset the
system to initial default conditions.
This function resets ALL connected sessions owned by the HLLAPI application. As a result, caution is
advised when using this function.

Function Call

Call Parameters

Return Codes

Remarks

lxii Contents

Search Field—Function 30
This function searches a field in the Host session presentation space for the specified string. You can
use Search Field for either protected or unprotected fields but only in a field-formatted host
presentation space.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(SEARCHFIELD,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String String to search for.

Data Length Length of the search string. NA if session option EOT
is specified.

PS Position Position in the Host session presentation space of the
field to search. If session options SRCHFROM and
SRCHFRWD are set, indicates position to search from.
If session options SRCHFROM and SRCHBKWD are
set, indicates position to search to. If session option
SRCHALL is set, can be the position of any byte in the
field to search.

Data Length Description

0 The search string was not found.

>0 The search string was found. Value is the Host session
presentation space position where the string begins.

Code Description

WHLLOK The search string was found.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLPARAMETERERROR Data String was length zero or greater than the Host
session presentation space size.

WHLLPOSITIONERROR PS Position is invalid.

WHLLSYSERROR The function failed due to a system error.

WHLLNOFIELD The search string was not found, or the Host session
presentation space is unformatted.

Function Call

Call Parameters

Return Parameters

Return Codes

Contents lxiii

Position in the Host session presentation space is determined by starting in the upper left corner of the
screen display (row 1, column 1). At the end of each screen display row, the next Host session
presentation space position is column 1 of the following screen display row. This process continues
until the end of the Host session presentation space (screen display) is reached.
This function is affected by four session option parameters: STRLEN/STREOT, EOT=c,
SRCHALL/SRCHFROM and SRCHFRWD/SRCHBKWD. See Set Session Parameters (9) for details
on these session options. The first two parameters affect string length and termination, but the last two
directly affect how the Host session presentation space is examined:

Session Option Effect on this Function

SRCHALL Searches the entire field, specified by PS Position, for the
search string.

SRCHFROM, SRCHFRWD The search begins at PS Position and moves to the end of the
field. The search ends when the specified string is found or
when the end of the field.

SRCHFROM, SRCHBKWD The search begins at the end of the field and moves to the
beginning of the field. The search ends when the specified
string is found or when PS Position is reached.

Remarks

lxiv Contents

Search Presentation Space—Function 6
This function allows you to search the Host session presentation space for a specified string.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(SEARCHPS,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String String to search for.

Data Length Length of the search string. NA if session option EOT is
specified.

PS Position Position in the Host session presentation space. If session
options SRCHFROM and SRCHFRWD are set, indicates
position to search from. If session options SRCHFROM
and SRCHBKWD are set, indicates position to search to.
NA if session option SRCHALL is set.

Parameter Description

Data Length If equal to zero, indicates the string was not found. If
greater than zero, indicates the Host session presentation
space position where the string was found.

Code Description

WHLLOK The completed successfully. You must check the Data
Length parameter to determine if the string was found.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a session.

WHLLPARAMETERERROR Invalid parameters were specified.

WHLLPOSITIONERROR PS Position value is invalid.

WHLLSYSERROR The function failed due to a system error.

WHLLNOFIELD The string was not found.

“Position” in the Host session presentation space is determined by starting in the upper left corner of
the screen display (row 1, column 1). At the end of each screen display row, the next Host session
presentation space position is column 1 of the following screen display row. This process continues
until the end of the Host session presentation space (screen display) is reached.

Function Call

Call Parameters

Return Parameters

Return Codes

Remarks

Contents lxv

This function is affected by four session option parameters: STRLEN/STREOT, EOT=c,
SRCHALL/SRCHFROM and SRCHFRWD/SRCHBKWD. See Set Session parameters (function 9) for
details on these session options. The first two parameters affect string length and termination, but the
last two directly affect how the Host session presentation space is examined:

Session Option Effect on this Function

SRCHALL, SRCHFRWD Overrides PS Position parameter and searches from the
beginning of the Host session presentation space for the
specified string. If the string exists, the first instance of
the string is returned.

SRCHALL, SRCHBKWD Overrides PS Position parameter and searches from the
end of the Host session presentation space for the
specified string. If the string exists, the last instance of
the string is returned.

SRCHFROM, SRCHFRWD The search begins at PS Position and moves to the end
of the Host session presentation space. The search ends
when the specified string is found or when the end of
the presentation space is reached.

SRCHFROM, SRCHBKWD The search begins at the end of the Host session
presentation space and moves to the beginning of the
presentation space. The search ends when the specified
string is found or when PS Position is reached.

This function can be used to determine when the Host session is available for input. If your Windows
HLLAPI application is waiting for a specific message or prompt, issue this function until the message
or prompt is found.
You can also use the SRCHFROM session option in combination with this function to find multiple
occurrences of a string in the Host session presentation space.

lxvi Contents

Send File—Function 90
This function transfers a file from the PC running the Windows HLLAPI application to the Host. The
file transfer can be synchronous (dedicated) or asynchronous (call-and-return). See the “Remarks”
section for information on asynchronous file transfer.

Prerequisite Functions
None.
WinHLLAPI(SENDFILE,lpbyString,lpwLength,lpwReturnnCode)

WinHLLAPIAsync(hWnd,SENDFILE,lpbyString,lpwLength,
lpwReturnnCode)

Parameter Description

Data String SEND command parameters.

Data Length Length of Data String. NA if session option EOT is
specified.

PS Position NA.

Code Description

WHLLOK File transfer started successfully (asynchronous mode
only).

WHLLPARAMETERERROR Parameter error or Data Length is zero or greater than
128.

WHLLFTXCOMPLETE The file transfer completed (synchronous mode only).

WHLLFTXSEGMENTED Transfer completed with one or more segmented
records (synchronous mode only).

WHLLSYSERROR The function failed due to a system error.

WHLLTRANSABORTED The file transfer aborted, either due to the user
entering CTRL+BREAK or (if a timeout was set by Set
Session Parameters, function 9) because the timeout
period expired.

WHLLINVALIDFUNCTIONNUM Invalid function number.

WHLLFILENOTFOUND PC file not found.

WHLLACCESSDENIED Access denied to PC file.

WHLLMEMORY Insufficient memory.

WHLLINVALIDENVIRONMENT Invalid environment.

Function Call

Call Parameters

Return Codes

Contents lxvii

This function is affected by the session options STRLEN/STREOT, EOT=c, QUIET/NOQUIET, and
TIMEOUT=0/TIMEOUT=c . See Set Session Parameters (function 9) for details.
You cannot use this function on 5250 sessions, 5250 printer sessions, or 3270 printer sessions. Only
one file transfer operation is supported at a time, regardless of the number of Host sessions accessed by
your Windows HLLAPI application.
Data String should contain the SEND command parameters that you would normally enter at the DOS
prompt. For example, to send the file SALES.RPT from your PC to the CMS file SLS REPRT A on the
Host session with the short name session ID of “E:”
u Data String SALES.RPT E:SLS REPRT A (ASCII CRLF

u Data Length 35

Asynchronous Mode
When asynchronous mode is enabled by calling WinHLLAPIAsync, the function initiates the file
transfer and immediately returns control to your Windows HLLAPI application. This frees your
application to perform other tasks while the file transfer is occurring.
Because asynchronous mode returns control immediately, you must use Windows version 3.x message
notification to determine the completion status of the file transfer. Use the RegisterWindowsMessage(
) function to register the message “WinHLLAPIAsyncFileTransfer”. The message notification is in the
format:
(wMsgID, wParm, lParm)

where

wMsgID Is the message ID returned by RegisterWindowsMessage.

wParm Is the status indicator: the high byte contains the short name session ID, the
low byte contains the status. If the low byte is zero, the file transfer is still
in progress. If the low byte is one, the file transfer has completed.

lParm Depends upon the low byte value of wParm. If the low byte of wParm is
zero (in progress), lParm is the number of bytes that have been transferred.
If the low byte of wParm is one (completed), lParm is the two-digit Host
TRANS code.

Remarks

lxviii Contents

Send Key—Function 3
This function sends one or more keystrokes (up to a maximum of 255) to the connected Host session.
The keystrokes appear to the session as if they are entered by a user. The keystrokes can include host
function keys and AID keys.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(SENDKEY,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String String of keystrokes, maximum of 255 bytes (including
host function key codes).

Data Length Length of Data String in bytes. This parameter is
overridden if in EOT mode.

Code Description

WHLLOK The keystrokes were sent successfully.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLPARAMETERERROR The function call contains an invalid parameter.

WHLLPSBUSY The session is busy; all of the keystrokes could not be sent.

WHLLINHIBITED Input to the session is inhibited; keystrokes were rejected
or invalid host function key codes were sent. All of the
keystrokes could not be sent.

WHLLSYSERROR The function failed due to a system error.

You cannot send keystrokes to the Host session when the keyboard is locked or busy (input inhibited).
You can check the keyboard status with Wait (function 4). It is also your responsibility to treat input-
protected or numeric-only Host fields appropriately.
This function is affected by five session options specified by Set Session Parameters (function 9):
AUTORESET/NORESET, STRLEN/STREOT, EOT=c, and ESC=c.
You can increase the performance of the Send Key function by setting the session option NORESET. If
this session option is set to AUTORESET, a reset code is always added to the beginning of the
keystroke string, resetting all states that can be reset (except input-inhibited states). The added reset
code bytes are not deducted from the Data String length of 255.
By default, the length of the Data String parameter must be specified by the Data Length parameter.
Optionally, you can implicitly define the Data Length parameter by using the EOT delimiter character,
which is specified with Set Session Parameters (function 9).

Better character transfer performance is achieved with Copy String To Field
(function 33) or Copy String To Presentation Space (function 15). However, only
this function (Send Key) can send the host function keys.

This function can be used to send host function keys (including AID keys) to the Host by using special
codes. These codes consist of an Escape character (default is “@,” the “at” sign) and a mnemonic code
that corresponds to the supported host functions. The desired host function key codes are included as

Function Call

Call Parameters

Return Codes

Remarks

Note

Contents lxix

part of the Data String parameters. The Escape character can be changed with the session option
ESC=c. See Set Session Parameters (function 9) for details.
When the Data String contains AID keys, the string includes characters up to, and including, the first
AID key encountered. The segment string and segment length are set internally to the proper values as
the segment is sent to the Host. Because some Host applications process AID keys differently, some
keystrokes in a subsequent segment could be lost. It is therefore required that you do not create a Data
String containing more than one AID key.
The characters that make up the host function key codes are part of the Data String and make up its
total length. This means that you must be careful when using host function key codes to not exceed the
maximum of 255 characters in the Data String. For example, if you need to send a string that contains
the Enter key (code @E), then the two bytes for the Enter code must be included in the Data Length
parameter.
The following table lists the host function keys and their corresponding codes. Please note that if a
character is used in the code, the case of the character is important.

Meaning Mnemonic 3270 5250

@ @@ X

Alt @A X

Alternate Cursor @$ X X

Attention @A@Q X X

Backspace @< X X

Backtab (Left Tab) @B X X

Clear @C X X

Cmd Function Key @A@Y X

Cursor Down @V X

Meaning Mnemonic 3270 5250

Cursor Left @L X

Cursor Right @Z X

Cursor Select @A@J X

Cursor Up @U X X

Delete @D X X

Dup @S@x X X

End @q X

Enter @E X X

Erase EOF @F X X

Erase Input @A@F X X

Field Exit @A@E X

Field Mark @S@y X X

Field - @A@- X

Field + @A@+ X

Help @H X

lxx Contents

Hexadecimal @A@X X

Home @0 (zero) X X

Insert @I X7 X

Insert Toggle @A@I X

Host Print @P X

Left Tab (Back Tab) @B X X

New Line @N X X

Page Up @u X

Page Down @v X

Print (PC) @A@t X

Record Backspace @A@< X

Reset @R X X

Right Tab (Tab) @T X X

Shift @S X

Sys Request @A@H X X

Tab (Right Tab) @T X X

Test @A@C X

PA1 @x X

PA2 @y X

PA3 @z X

Meaning Mnemonic 3270 5250

PA4 @+ X

PA5 @% X

PA6 @& X

PA7 @’ X

PA8 @(X

PA9 @) X

PA10 @* X

PF1/F1 @1 X X

PF2/F2 @2 X X

PF3/F3 @3 X X

PF4/F4 @4 X X

PF5/F5 @5 X X

PF6/F6 @6 X X

PF7/F7 @7 X X

PF8/F8 @8 X X

Contents lxxi

PF9/F9 @9 X X

PF10/F10 @a X X

PF11/F11 @b X X

PF12/F12 @c X X

PF13 @d X X

PF14 @e X X

PF15 @f X X

PF16 @g X X

PF17 @h X X

PF18 @i X X

PF19 @j X X

PF20 @k X X

PF21 @l X X

PF22 @m X X

PF23 @n X X

PF24 @o X X

If you want to use the “at” sign (@) in the Data String, you must use the two-
byte code “@@”.
Note

lxxii Contents

Set Cursor—Function 40
This function places the cursor at a specified position in the Host session presentation space.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(SETCURSOR,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String NA.

Data Length NA.

PS Position Position in the Host session presentation space to locate the
cursor.

Code Description

WHLLOK The cursor was successfully placed at the specified position.

WHLLNOTCONNECTED Your Windows HLLAPI application is not currently
connected to a Host session.

WHLLPSBUSY The Host session is busy.

WHLLPOSITIONERROR PS Position is invalid (less than 1 or greater than the
maximum Host session presentation space size).

WHLLSYSERROR The function failed due to a system error.

5250 emulators supports a Presentation Space of 24 rows by 80 columns. When an error message from
the host or when the operator presses the SysReq key, a 25th row is displayed. When the row 25 is
displayed, it is a valid area for this function.

Function Call

Call Parameters

Return Codes

Remarks

Contents lxxiii

Set Session Parameters—Function 9
This function sets the options of the Host session. Session options that are not set with this function
use their default values. Session options set with this function remain in effect until one of the
following occurs:
u Another Set Session Parameters call sets a new value.

u Reset System (function 21) is called.

Prerequisite Functions
None.
WinHLLAPI(SETSESSIONPARAMETERS,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String String containing the desired session options to set. If
more than one session option is set, use a comma or
space to separate the session options. See “Remarks”
section for an explanation of the session options.

Data Length Explicit length of Data String (EOT cannot be used).

PS Position NA

Parameter Description

Data Length Remains the same as the call value if all session
options in Data String are valid. If Data String
contains any invalid session options, Data Length is
set to the number of valid session options contained in
Data String.

Code Description

WHLLOK All of the requested session options set as specified.

WHLLPARAMETERERROR Data String contains one or more invalid session
options.

WHLLSYSERROR The function failed due to a system error.

Function Call

Call Parameters

Return Parameters

Return Codes

lxxiv Contents

The following table lists the functions that are affected by session options, and the session options that
affect them.
Function Name
(function number) Session Options

Connect Presentation Space (function 1) CONLOG/CONPHYS,
WRITE_SUPER/WRITE_WRITE
/WRITE_READ/WRITE_NONE
/SUPER_WRITE/READ_WRITE,
NOKEY/KEY$nnnnnnn

Send Key (function 3) STRLEN/STREOT, EOT=c, ESC=c,
AUTORESET/NORESET, RETRY/NORETRY

Wait (function 4) TWAIT/LWAIT/NWAIT
Copy Presentation Space (function 5) NOATTRB/ATTRB, EAB/NOEAB,

XLATE/NOXLATE, DISPLAY/NODISPLAY
Search Presentation Space (function 6) STRLEN/STREOT, EOT=c,

SRCHALL/SRCHFROM,
SRCHFRWD/SRCHBKWD

Copy Presentation Space to String (function 8) NOATTRB/ATTRB, EAB/NOEAB,
XLATE/NOXLATE, DISPLAY/NODISPLAY

Query Sessions (function 10) NOCFGSIZE/CFGSIZE
Copy OIA (function 13) OLDOIA/NEWOIA
Copy String to Presentation Space (function 15) STRLEN/STREOT, EOT=c, EAB/NOEAB
Pause (function 18) FPAUSE/IPAUSE
Search Field (function 30) STRLEN/STREOT, EOT=c,

SRCHALL/SRCHFROM,
SRCHFRWD/SRCHBKWD

Copy String to Field (function 33) STRLEN/STREOT, EOT=c, EAB/NOEAB
Copy Field to String (function 34) NOATTRB/ATTRB, EAB/NOEAB,

XLATE/NOXLATE, DISPLAY/NODISPLAY

Remarks

Contents lxxv

Function Name
(function number) Session Options

Get Key (function 51) ESC=c, TWAIT/LWAIT/NWAIT
Send File (function 90) STRLEN/STREOT, EOT=c, NOQUIET/QUIET,

TIMEOUT=0/TIMEOUT=c
Receive File (function 91) STRLEN/STREOT, EOT=c, NOQUIET/QUIET,

TIMEOUT=0/TIMEOUT=c
Connect PM Window Service
(function 101)

WRITE_SUPER/WRITE_WRITE
/WRITE_READ/WRITE_NONE
/SUPER_WRITE/READ_WRITE

The session options are described on the following pages, grouped by function. Each group of session
options lists their general function, which Windows HLLAPI functions they affect, and the
characteristics of each session option setting.

STRLEN/STREOT
Specify how the length of Data String is determined. Applies to Send Key (3), Search Presentation
Space (6), Copy String to Presentation Space (15), Search Field (30), Copy String to Field (33), Send
File (90) and Receive File (91).

Session Option Description

STRLEN Data Length explicitly defined. This is the default setting.

STREOT Data Length not necessarily defined; Data String parameter on a
function call ends in an EOT character.

EOT=c
When the STREOT session option is set, specify the delimiter character to mark the end of the Data
String parameter on a function call. Applies to Send Key (3), Search Presentation Space (6), Copy
String to Presentation Space (15), Search Field (30), Copy String to Field (33), Send File (90) and
Receive File (91).

Session Option Description

EOT=c Set the EOT character to “c,” which must be a 1-byte literal
character. There must not be a space on either side of the equal
sign (“space” is not a valid EOT character). The default EOT
character is binary zero.

lxxvi Contents

SRCHALL/SRCHFROM
Determine how the Host session presentation space is to be searched. Applies to Search Presentation
Space (6) and Search Field (30).

Session Option Description

SRCHALL If using Search Presentation Space (6), search the entire Host
session presentation space. If using Search Field (30), search the
entire field. SRCHALL is the default setting.

SRCHFROM If session option SRCHFRWD is set, start search at specified PS
Position and stop at the end (of the field or Host session
presentation space). If session option SRCHBKWD is set, start
search at the end and stop at specified PS Position.

SRCHFRWD/SRCHBKWD
When the SRCHFROM session option is set, determine the direction of the search. Applies to Search
Presentation Space (6) and Search Field (30).

Session Option Description

SRCHFRWD When session option SRCHFROM is set, start search at specified
PS Position and stop at the end (of the field or Host session
presentation space). This is the default setting.

SRCHBKWD When session option SRCHFROM is set, start search at the end
(of the field or Host session presentation space) and stop at
specified PS Position.

NOATTRB/ATTRB
Determine how to translate attributes to your Windows HLLAPI application. Applies to Copy
Presentation Space (5), Copy Presentation Space to String (8) and Copy Field to String (34).

Session Option Description

NOATTRB Translate EBCDIC bytes that do not have ASCII equivalents to
spaces (ASCII 20h). NOATTRB is the default setting.

ATTRB EBCDIC bytes that do not have ASCII equivalents are not
translated, but are passed as their original EBCDIC values.

Contents lxxvii

FPAUSE/IPAUSE
Determine the type of pause to use. Applies to Pause (18).

Session Option Description

FPAUSE Full pause; pause for the length of time specified in Pause (function
18). FPAUSE is the default setting.

IPAUSE Interruptible pause; once a Start Host Notification (function 23) call is
made, any Host event ends the pause.

NOQUIET/QUIET
Determine whether the file transfer functions SEND FILE (90) and RECEIVE FILE (91) will generate
messages displayed to the user. These options are not supported for 5250 emulation.

Session Option Description

NOQUIET SEND and RECEIVE messages are displayed.

QUIET SEND and RECEIVE messages are not displayed.

TIMEOUT=0/TIMEOUT=c
Set the timeout interval to be used during file transfer operations. If a timeout occurs, the file transfer
aborts. These options are not supported for 5250 emulation.

Session Option Description

TIMEOUT=0 Set the timeout to 30 seconds. There must not be a space on either
side of the equal sign; the value is a zero. TIMEOUT=0 is the default
setting.

lxxviii Contents

Session Option Description

TIMEOUT=c Set the timeout to a specific period. A CTRL+BREAK is issued
automatically after the specified period. There must not be a space on
either side of the equal sign; c is a one-byte character that can be
only one of the following values:

1 30 seconds (0.5 minutes)
2 60 seconds (1.0 minutes)
3 90 seconds (1.5 minutes)
4 120 seconds (2.0 minutes)
5 150 seconds (2.5 minutes)
6 180 seconds (3.0 minutes)
7 210 seconds (3.5 minutes)
8 240 seconds (4.0 minutes)
9 270 seconds (4.5 minutes)
J 300 seconds (5.0 minutes)
K 330 seconds (5.5 minutes)
L 360 seconds (6.0 minutes)
M 390 seconds (6.5 minutes)
N 420 seconds (7.0 minutes)

ESC=c
Specify the escape character to use for 3270 function key codes. Applies to Send Key (3) and Get Key
(51).
Set the escape character to use for 3270 function key codes to c which is a one-byte literal character.
There must not be a space on either side of the equal sign (“space” is not a valid escape character). The
default escape character is the at sign (@).

AUTORESET/NORESET
Determine if Send Key (function 3) sends a reset prior to the keystroke string or not.

Session Option Description

AUTORESET A reset precedes the keystroke string specified with a Send Key (3),
attempting to reset any states that can be reset (except input-
inhibited). AUTORESET is the default setting.

NORESET A reset does not precede the keystroke string specified with a Send
Key (3).

Contents lxxix

TWAIT/LWAIT/NWAIT
Determine the characteristics of a wait period. Applies to Wait (4) and Get Key(51).

Session Option Description

TWAIT For Wait (4), wait up to 60 seconds before timing out on XCLOCK
or XSYSTEM. For Get Key (function 51), wait until a keystroke is
queued before returning. TWAIT is the default setting.

LWAIT For Wait (4), wait until the XCLOCK or XSYSTEM clears. This
setting is not recommended because your Windows HLLAPI does
not regain control until the Host is available. For Get Key (51), wait
until a keystroke is queued before returning.

NWAIT No wait period applies. Wait (4) and Get Key (51) calls each check
their respective status and return immediately.

TRON/TROFF
Determine whether to enable or disable Windows HLLAPI tracing. The information in the trace is
intended to help debug a Windows HLLAPI program. Tracing is turned off when the Windows
HLLAPI program ends or when TROFF is specified.

Session Option Description

TROFF Turn tracing off.

TRON Turn tracing on. With tracing enabled, all executed Windows
HLLAPI functions are traced.

EAB/NOEAB
Determine whether to include extended attributes (EABs) or not. Applies to Copy Presentation Space
(5), Copy Presentation Space to String (8), Copy String to Presentation Space (15), Copy String to
Field (33) and Copy Field to String (34).

Session Option Description

EAB Include extended attributes (EABs) with Data String. Since there is
an EAB for every character that displays, you must define Data
String to be twice the size of the Host session presentation space or
field.

NOEAB Do not include any extended attributes (EABs) with Data String (no
EABs). This is the default setting.

lxxx Contents

XLATE/NOXLATE
Determine the translation of extended attributes (EABs). Applies to Copy Presentation Space (5), Copy
Presentation Space to String (8) and Copy Field to String (34).

Session Option Description

XLATE Translate extended attributes (EABs) into CGA colors.

NOXLATE Do not translate extended attributes (EABs).

CONLOG/CONPHYS
Specify which application will be the foreground application when connecting to a session. Applies to
Connect Presentation Space (1).

Session Option Description

CONLOG After connection, your Windows HLLAPI application remains the
foreground application. CONLOG is the default setting.

CONPHYS After connection, the specified session becomes the foreground
application, updating the session and accepting keyboard input. Your
Windows HLLAPI application can still access the session (to monitor
for a specific event, for example). To return foreground control to your
Windows HLLAPI application, call Disconnect Presentation Space
(2).

OLDOIA/NEWOIA
Specify the format for the data returned from Copy OIA (13).

Session Option Description

OLDOIA Data returned in 3270 PC format. For 5250 support the OIA is
always returned in ASCII therefore OLDOIA is accepted but
ignored.

NEWOIA Data is returned in ASCII format.

NOCFGSIZE/CFGSIZE
Determine the presentation space size returned by Query Sessions (10).

Session Option Description

NOCFGSIZE Returns the current size of the connected presentation space.

CFGSIZE Returns the configured size of the presentation space thereby ignoring
any override of the presentation space by the host.

DISPLAY/NODISPLAY
Specify whether nondisplay fields will be copied using Copy Presentation Space (5), Copy Presentation
Space to String (8), Copy OIA (13), Copy String to Presentation Space (15), Copy String to Field (33),
and Copy Field to String (34).

Session Option Description

DISPLAY Nondisplay fields are copied to the target buffer in the same manner
as display fields.

NODISPLAY Nondisplay fields are copied as a string of nulls to the target buffer.
This allows applications to display the copied buffer in the
presentation window without displaying confidential information,
such as passwords.

Contents lxxxi

WRITE_SUPER/WRITE_WRITE/WRITE_READ
/WRITE_NONE/SUPER_WRITE/READ_WRITE

Specify whether a Windows HLLAPI application can or will share the presentation space to which it is
connected with another application using Connect Presentation Space (1) and Connect PM Window
Services (101).

Session Option Description

WRITE_SUPER Set by a Windows HLLAPI application that requires write access and
allows only supervisory applications to connect to its presentation
space.

WRITE_WRITE Set by a Windows HLLAPI application that requires write access and
allows other applications that have predictable behavior to connect to
its presentation space.

WRITE_READ Set by a Windows HLLAPI application that requires write access and
allows other applications to use read-only functions on its connected
presentation space.

WRITE_NONE Set by a Windows HLLAPI application that requires exclusive access
to the connected presentation space. No other applications, not even
supervisory, will have access to its presentation space.

SUPER_WRITE Set by a Windows HLLAPI supervisory application allowing
applications with write access to share the connected presentation
space. The application setting this parameter will not cause errors for
other application but provide only supervisory-type functions.

READ_WRITE Set by a Windows HLLAPI application that requires read-only access
and allows other applications that perform read-only functions to
connect to its presentation space.

lxxxii Contents

NOKEY/KEY$nnnnnnnn
Allow applications that have sharing requirements to limit access to a partner application (i.e. an
application developed to work with it).

Session Option Description

NOKEY Allows the application to be compatible with existing applications
that do not specify the KEY parameter.

KEY$nnnnnnn Specify the keyword to restrict sharing of the presentation space. The
keyword must be exactly 8-bytes long.

Contents lxxxiii

Start Close Intercept—Function 41
This function allows the application to intercept user requests to close the emulation program.

Prerequisite Functions
None.
WinHLLAPI(STARTCLOSEINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)

WinHLLAPIAsync(hWnd,STARTCLOSEINTERCEPT,lpbyString,
lpwLength,lpwReturnnCode)

Parameter Description

Data String A 5-byte string for returned semaphore address. The first
byte is a short name session ID of the session to query, or
space or null for the current session.

Data Length Must be specified

PS Position NA

Parameter Description

Data String A 5-byte string with the following format:

Byte 1 Short name session ID, or space
or null for the

current session.

Bytes 2-5 Semaphore address.

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLNOTSUPPORTED The function was not supported by the emulation program.

WHLLCANCEL The asynchronous function was cancelled.

Initially, the semaphore is set. After using this function, close requests from the user are discarded and
the semaphore is cleared. Your application program can use the Query Close Intercept function to
determine when a close request has occurred. This function is not supported for 5250 emulation.

Function Call

Call Parameters

Return Parameters

Return Code

Remarks

lxxxiv Contents

Asynchronous Mode
When asynchronous mode is enabled by calling WinHLLAPIAsync, the function initiates close
intercept and immediately returns control to your Windows HLLAPI application. This frees your
application to perform other tasks while waiting for close requests.
Because asynchronous mode returns control immediately, you must use Windows version 3.x message
notification to determine when close requests have occurred. Use the RegisterWindowsMessage()
function to register the message “WinHLLAPIAsync”. See WinHLLAPIAsync in Chapter 4 for
details.

Contents lxxxv

Start Host Notification—Function 23
This function enables notifying your Windows HLLAPI application of changes in the Host session
presentation space or Operation Information Area (OIA).

Prerequisite Functions
None.
WinHLLAPI(STARTHOSTNOTIFICATION,lpbyString,lpwLength,

lpwReturnnCode)

WinHLLAPIAsync(hWnd,STARTHOSTNOTIFICATION,lpbyString,
lpwLength,lpwReturnnCode)

Parameter Description

Data String A 7-byte string in the following format:

Byte 1 Short name session ID of the desired Host
session, or space or null for the current Host
session.

Byte 2 Notification mode. “P” for presentation space
update only, “O” for OIA update only, “B”
for both presentation space and OIA updates.
When calling WinHLLAPIAsync, this
position can be “A”.

Bytes 3-6 Not used; no error occurs if an old Windows
HLLAPI application uses these positions.

Byte 7 Reserved or replace with one of the following
if using WinHLLAPIAsync and “A” in byte
2: “P” for presentation space update only,
“O” for OIA update only, “B” for both
presentation space and OIA updates

Data Length Length of Host event buffer (256 recommended).

PS Position NA

Parameter Description

Data String Same as Data String on the call.

Code Description

WHLLOK Host notification enabled.

WHLLNOTCONNECTED The specified Host session is invalid.

WHLLPARAMETERERROR One or more parameters are invalid.

WHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Function Call

Call Parameters

Return Parameters

Return Codes

lxxxvi Contents

Once enabled, Host notification is enabled until you call Stop Host Notification (function 25).
Once you call this function, you can use Pause (function 18) to notify your Windows HLLAPI
application when the presentation space and/or OIA of a Host session have been updated. Use Query
Host Update (function 24) to determine which parts of the Host session (presentation space, OIA, or
both) have been updated.

Asynchronous Mode
When asynchronous mode is enabled by calling WinHLLAPIAsync, the function initiates host
notification and immediately returns control to your Windows HLLAPI application. This frees your
application to perform other tasks while waiting for host updates.
Because asynchronous mode returns control immediately, you must use Windows version 3.x message
notification to determine when host updates have occurred. Use the RegisterWindowsMessage()
function to register the message “WinHLLAPIAsync”. See WinHLLAPIAsync in Chapter 4 for
details.

Remarks

Contents lxxxvii

Start Keystroke Intercept—Function 50
This function enables your Windows HLLAPI application to intercept keystrokes sent to a session by
the user.

Prerequisite Functions
None.
WinHLLAPI(STARTKSINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)

WinHLLAPIAsync(hWnd,STARTKSINTERCEPT,lpbyString,lpwLength,
lpwReturnnCode)

Parameter Description

Data String A 6-byte string in the following format:

1 Short name session ID of the desired Host
session, or space or null for the current Host
session.

2 Keystroke intercept code. “D” causes only AID
keystrokes to be intercepted; “L” causes all
keystrokes to be intercepted.

3-6 Reserved.

Data Length Variable (256 is recommended).

PS Position NA.

Code Description

WHLLOK Keystroke intercept has been enabled.

WHLLNOTCONNECTED The Host session presentation space is invalid.

WHLLPARAMETERERROR One or more call parameters are invalid.

WHLLPSBUSY The Host session is busy.

WHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Once this function is called, the intercepted keystrokes can be:
u Received with Get Key (function 51) and sent to the same session or another

session with Send Key (function 3).

u Accepted and rejected with Post Intercept Status (function 52).

u Replaced by other keystrokes with Send Key (function 3).

u Used in a specific manner as appropriate for your Windows HLLAPI
application.

Function Call

Call Parameters

Return Codes

Remarks

lxxxviii Contents

If position 2 of Data String is “D,” only AID keystrokes are intercepted. All other keystrokes are
passed on to the appropriate Host session presentation space.

Asynchronous Mode
When asynchronous mode is enabled by calling WinHLLAPIAsync, the function initiates keystroke
intercept and immediately returns control to your Windows HLLAPI application. This frees your
application to perform other tasks while waiting for keystrokes.
Because asynchronous mode returns control immediately, you must use Windows version 3.x message
notification to determine when keystrokes have occurred. Use the RegisterWindowsMessage()
function to register the message “WinHLLAPIAsync”. See WinHLLAPIAsync in Chapter 4 for
details.

Contents lxxxix

Stop Close Intercept—Function 43
This function stops the application from intercepting close requests from the user. Subsequent close
requests are processed normally by the emulator program.

Prerequisite Functions
Start Close Intercept (function 41).
WinHLLAPI(STOPCLOSEINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String One-character short name session ID of the presentation
space.

Data Length NA.

PS Position NA

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected for window services.

WHLLPARAMETERERROR An invalid option was specified.

WHLLNOTAVAILABLE Start Close Intercept has not been called prior to this
function for the specified presentation space.

WHLLSYSERROR The function failed due to a system error.

WHLLPSENDED The session stopped.

This function is not supported for 5250 emulation.

Function Call

Call Parameters

Return Codes

Remarks

xc Contents

Stop Host Notification—Function 25
This function disables notifying your Windows HLLAPI application of changes in the Host session
presentation space or Operation Information Area (OIA).

Prerequisite Functions
Start Host Notification (function 23).
WinHLLAPI(STOPHOSTNOTIFICATION,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String Short name session ID of the desired Host session, or space
or null for the current Host session.

Data Length NA (length of 1 is implied).

PS Position NA

Code Description

WHLLOK Host notification disabled (function successful).

WHLLNOTCONNECTED The specified Host session is invalid.

WHLLNOTAVAILABLE Start Host Notification (function 23) has not been called prior
to this function for the specified Host session.

WHLLSYSERROR The function failed due to a system error.

Once Host notification has been disabled, Query Host Update (function 24) can no longer determine
updates to the Host session, and Host events do not satisfy Pause (function 18).

Function Call

Call Parameters

Return Codes

Remarks

Contents xci

Stop Keystroke Intercept—Function 53
This function disables the ability of your Windows HLLAPI application to intercept keystrokes.

Prerequisite Functions
Start Keystroke Intercept (function 50).
WinHLLAPI(STOPKSINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String One byte: short name session ID of the desired Host
session, or space or null for the current Host session.

Data Length NA (length of 1 is implied).

PS Position NA.

Code Description

WHLLOK Keystroke intercept has been enabled.

WHLLNOTCONNECTED The Host session presentation space is invalid.

WHLLNOTAVAILABLE Start Keystroke Intercept (function 50) was not called prior
to this function call.

WHLLSYSERROR The function failed due to a system error.

Function Call

Call Parameters

Return Codes

xcii Contents

Wait—Function 4
This function determines whether the Host session is in a wait state. If, for some reason, the session is
in a wait state, this function causes your Windows HLLAPI application to wait for the specified
amount of time to see if the wait condition clears. The amount of time to wait is set by session options
with Set Session Parameters (function 9).

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(WAIT,lpbyString,lpwLength,lpwReturnnCode)

WinHLLAPIAsync(hWnd,WAIT,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String NA

Data Length NA

PS Position NA

Code Description

WHLLOK The keyboard is unlocked and ready for input.

WHLLNOTCONNECTED Your Windows HLLAPI application is not connected to a
valid Host session.

WHLLPSBUSY Wait function timed out while still in XCLOCK or
XSYSTEM for 3270 terminals, or Input Inhibited for 5250
terminals.

WHLLINHIBITED The keyboard is locked.

WHLLSYSERROR The function failed due to a system error.

WHLLCANCEL The asynchronous function was cancelled.

Wait can be used to provide other functions, such as Send Key (function 3), enough time to complete
or be processed. You can also use Wait to see if the keyboard is inhibited (return code of 4). Be aware,
however, that when the return code is 0 (zero), the keyboard is unlocked and Wait has executed
successfully, but the original transaction or preceding function may not have finished processing on the
Host. If there are keywords or prompts you are expecting, use Search Field (function 30) or Search
Presentation Space (function 6) in combination with Wait.
The length of time that this function will wait is affected by the session options TWAIT, LWAIT, and
NWAIT. See Set Session Parameters (function 9) for details on these session options.

Function Call

Call Parameters

Return Codes

Remarks

Contents xciii

Although both APIs are supported, you should use WinHLLAPIAsync instead of WinHLLAPI
whenever possible. Note that if NWAIT is specified, the WinHLLAPIAsync call will work the same
as the WinHLLAPI call and not send a message.

xciv Contents

Window Status—Function 104
This function allows the application to query or change a session’s window size, location, or visible
state, or to query a session’s window handle or font characteristics.

Prerequisite Functions
Connect Window Services (function 101).
WinHLLAPI(WINDOWSTATUS,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String See the following tables.

Data Length NA (defaults to 16 or 20, depending on the status request).

PS Position NA

Data String Description

Set window status - a 16-byte string with the following format:

Byte 1 Short name session ID of the desired host session, or space or null for
the current host session.

Byte 2 WHLL_WINDOWSTATUS_SET for set status.

Bytes 3-4 An integer containing the set values. The following are valid:

u WHLL_WINDOWSTATUS_SIZE. Change the window size (not
valid with minimize, maximize, restore, or move).

u WHLL_WINDOWSTATUS_MOVE. Change the window x or y
position (not valid with minimize, maximize, size, or restore).

u WHLL_WINDOWSTATUS_ZORDER. Specifies window z-
order placement.

u WHLL_WINDOWSTATUS_SHOW. Set the window to visible.

u WHLL_WINDOWSTATUS_HIDE. Set the window to invisible.

u WHLL_WINDOWSTATUS_ACTIVATE. Activate the window.
Use the _ZORDER placement if specified, otherwise set focus to the
window and place it in the foreground.

u WHLL_WINDOWSTATUS_DEACTIVATE. Deactivate the
window. Use the _ZORDER placement if specified, otherwise place
it in the background.

u WHLL_WINDOWSTATUS_MINIMIZE. Set the window to
minimized (not valid with maximize, restore, size, or move).

Function Call

Call Parameters

Contents xcv

Data String Description

Set window status - a 16-byte string with the following format:

u WHLL_WINDOWSTATUS_MAXIMIZE. Set the window to
maximized (not valid with minimize, restore, size, or move).

u WHLL_WINDOWSTATUS_RESTORE. Restore the window
(not valid with maximize, minimize, size, or move).

Bytes 5-6 Specifies the x-coordinate of the upper-left corner of the window.

Bytes 7-8 Specifies the y-coordinate of the upper-left corner of the window.

Bytes 9-10 Specifies the width of the window.

Bytes 11-12 Specifies the height of the window.

Bytes 13-16 Specifies the z-order placement of the window (only valid for the set
option when the _ZORDER option is specified). Valid values are:

u WHLL_WINDOWSTATUS_FRONT. Place window in front.

u WHLL_WINDOWSTATUS_BACK. Place window in back.

Query window status - a 16-byte string with the following format:

Byte 1 Short name session ID of the desired host session, or space or null for
the current host session.

Byte 2 WHLL_WINDOWSTATUS_QUERY for query for status.

Bytes 3-4 An integer containing WHLL_WINDOWSTATUS_NULL. The
following are possible return values. More than one status is possible.

u WHLL_WINDOWSTATUS_SHOW. The window is visible.

u WHLL_WINDOWSTATUS_HIDE. The window is invisible.

u WHLL_WINDOWSTATUS_ACTIVATE. The window is
activated.

u WHLL_WINDOWSTATUS_DEACTIVATE. The window is
deactivated.

u WHLL_WINDOWSTATUS_MINIMIZE. The window is
minimized.

u WHLL_WINDOWSTATUS_MAXIMIZE. The window is
maximized.

Bytes 5-6 Specifies the x-coordinate of the upper-left corner of the window.

Bytes 7-8 Specifies the y-coordinate of the upper-left corner of the window.

Bytes 9-10 Specifies the width of the window.

Bytes 11-12 Specifies the height of the window.

Bytes 13-16 Specifies the z-order placement of the window (only valid for the set
option when the _ZORDER option is specified). Valid values are:

u WHLL_WINDOWSTATUS_FRONT. Place window in front.

u WHLL_WINDOWSTATUS_BACK. Place window in back.

xcvi Contents

Data String Description

Query extended window status - a 20-byte string with the following format:

Byte 1 Short name session ID of the desired host session, or space or null for
the current host session.

Byte 2 WHLL_WINDOWSTATUS_EXTQUERY for query extended status.

Bytes 3-4 An integer containing WHLL_WINDOWSTATUS_NULL. The
following are possible return values. More than one status is possible.

u WHLL_WINDOWSTATUS_SHOW. The window is visible.

u WHLL_WINDOWSTATUS_HIDE. The window is invisible.

u WHLL_WINDOWSTATUS_ACTIVATE. The window is
activated.

u WHLL_WINDOWSTATUS_DEACTIVATE. The window is
deactivated.

u WHLL_WINDOWSTATUS_MINIMIZE. The window is
minimized.

u WHLL_WINDOWSTATUS_MAXIMIZE. The window is
maximized.

Bytes 5-6 Specifies the current font height. The size assumes a fixed-pitch font
including any inter-column spacing (this value times the number of
displayed columns should equal the width of the presentation space).

Bytes 7-8 Specifies the current font width. The size includes any inter-line spacing
(this value times the number of displayed rows should equal the height
of the presentation space).

Bytes 9-10 Specifies the distance from the left edge of the window to the first
displayed column of the host screen, or zero if the host presentation
space exactly fits the window.

Bytes 11-12 Specifies the distance from the top of the window to the first displayed
row of the host screen, or zero if the host presentation space exactly fits
the window.

Bytes 13-14 Specifies the number of the first visible row of the presentation space.
This is normally one unless only a portion of the presentation space is
visible in the window.

Bytes 15-16 Specifies the number of the first visible column of the presentation
space. This is normally one unless only a portion of the presentation
space is visible in the window.

Bytes 17-20 Specifies the window handle of the emulator session. For Win16
handles, only positions 17-18 are used.

Contents xcvii

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected for window services.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLPSENDED The session stopped.

All coordinate positions, screen sizes, offsets, and font sizes are in pixels. This function is not
supported for 5250 emulation.
When resizing a window, the requested size and position may be slightly different then what was
requested. Follow the set option with a query option to determine the final window position and size.

Return Codes

Remarks

xcviii Contents

C H A P T E R 4

This chapter describes API extensions to Windows HLLAPI that allow asynchronous communication.
These extensions have been designed for all implementations and versions of the Microsoft Windows
graphical environment starting from Microsoft Windows version 3.0. They provide for Windows
HLLAPI implementations and applications in 16- and 32-bit operating environments.
Windows HLLAPI allows multithreaded Windows-based processes. A process contains one or more
threads of execution. In the non-multithreaded world of the 16-bit Windows environment, a task
corresponds to a process with a single thread. All references to threads in this document refer to actual
threads in multithreaded Windows environments. In non multithreaded environments, such as the
Windows version 3.0 graphical environment, “thread” is synonymous with “process.”
The extensions for the Windows environment included in Windows HLLAPI are provided for
maximum Microsoft Windows programming compatibility and optimum application performance.
Each of these function calls have corresponding prototypes in the WHLLAPI.H header file, found in
Appendix A.

Extensions for the Windows
Environment

Contents xcix

WinHLLAPIAsync()
This function provides an asynchronous flavor to the following HLLAPI functions:
STARTKSINTERCEPT, WAIT, STARTHOSTNOTIFICATION, STARTCLOSEINTERCEPT,
SENDFILE, and RECEIVEFILE. You should use WinHLLAPIAsync() instead of the blocking
versions of these functions.
HANDLE WinHLLAPIAsync(hWnd,lpwFunction,lpbyString,lpwLength,

lpwReturnCode);

When the asynchronous operation is complete, the application’s window hWnd receives the message
returned by RegisterWindowMessage with “WinHLLAPIAsync” or
“WinHLLAPIAsyncFileTransfer” as the input string. For STARTKSINTERCEPT, WAIT,
STARTHOSTNOTIFICATION, and STARTCLOSEINTERCEPT, The wParam argument contains the
asynchronous task handle as returned by the original function call. The high 16 bits of lParam contain
any error code. The error code may be any error as defined in WHLLAPI.H. An error code of zero
indicates successful completion of the asynchronous function. The low 16 bits contains the original
function number. For SENDFILE and RECEIVEFILE, the wParam and lParam contain status
information. See the Asynchronous Mode section of Send File and Receive File for details.
The return value specifies whether the asynchronous resolution request was successful.
It is nonzero if the operation was successful and the actual return value is an asynchronous task handle
that can be subsequently used to cancel the asynchronous resolution request if necessary. It is zero if
the function failed.
The asynchronous function can be canceled at any time by passing the handle returned by
WinHLLAPIAsync to WinHLLAPICancelAsyncRequest().

Windows HLLAPI Supplier Notes
The Windows HLLAPI supplier must ensure that messages are successfully posted to the application.
If a PostMessage() operation fails, the Windows HLLAPI implementation must re-post that message.
See also: WinHLLAPICancelAsyncRequest()

Syntax

Returns

c Contents

WinHLLAPICleanup()
This routine should be called by an application to deregister itself from a Windows HLLAPI
implementation.
BOOL WinHLLAPICleanup(void)

The return value indicates whether the deregistration was successful. It is non-zero if the application
was successfully deregistered; otherwise it is zero.

Windows HLLAPI Supplier Notes
Use the WinHLLAPICleanup() call to indicate deregistration of a Windows HLLAPI application
from a Windows HLLAPI implementation. This function can be used, for example, to free up resources
allocated to the specific application.
See also: WinHLLAPIStartup()

Syntax

Returns

Contents ci

WinHLLAPIIsBlocking()
This function allows a task to determine if it is executing while waiting for a previous blocking call to
complete.
BOOL WinHLLAPIIsBlocking(void)

The return value specifies the outcome of the function. It is nonzero if there is an outstanding blocking
call awaiting completion; otherwise it is zero.
Although a call issued on a blocking function appears to an application as though it blocks, the
WHLLAPI DLL has to relinquish the processor to allow other applications to run. This means that it is
possible for the application that issued the blocking call to be re-entered, depending on the message(s)
it receives. In this instance, the WinHLLAPIIsBlocking() call can be used to determine whether the
application task currently has been re-entered while waiting for an outstanding blocking call to
complete. Note that Windows HLLAPI prohibits more than one outstanding blocking call per thread.

Windows HLLAPI Supplier Notes
A Windows HLLAPI implementation must prohibit more than one outstanding blocking call per
thread.

Syntax

Returns

Remarks

cii Contents

WinHLLAPICancelAsyncRequest()
This function cancels an outstanding WinHLLAPIAsync()-based request.
int WinHLLAPICancelAsyncRequest(HANDLE hAsyncTaskID,WORD

wFunction)

An asynchronous task previously initiated by issuing one of the WinHLLAPIAsync() functions can
be canceled prior to completion by issuing the WinHLLAPICancelAsyncRequest() function and
specifying the asynchronous task ID as returned by the initial function in the hAsyncTaskID parameter
and the WinHLLAPI function number.

Parameter Type Description

hAsyncTaskID HANDLE Specifies the asynchronous task to be
canceled.

wFunction WORD Specifies the function number to be
canceled.

The return value specifies whether the original asynchronous request was canceled. It is zero if the
request was canceled; otherwise it is on of the following return codes:

WHLLINVALID Indicates that the specified asynchronous task ID was
invalid.

WHLLALREADY The asynchronous routine being canceled has already
completed.

Should an attempt to cancel an existing asynchronous WinHLLAPIAsync() routine fail with an error
code of WHLLALREADY, it can be for one of 2 reasons. Firstly, the original routine has already
completed and the application has dealt with the resultant message. Secondly, the original routine has
already completed but the resultant message is still waiting in the application window queue.
See also: WinHLLAPICancelAsyncRequest()

Syntax

Returns

Remarks

Contents ciii

WinHLLAPICancelBlockingCall()
This function cancels any outstanding blocking operation for its thread. Any outstanding blocked call
canceled will cause an error code of WHLLCANCEL to be generated. Examples of blocking calls are
WinHLLAPI with function number set to GETKEY, WAIT, PAUSE, SENDFILE or RECEIVEFILE.
You should use WinHLLAPIAsync() instead of the blocking versions of these functions.
Under Windows NT, a multi-threaded application may have multiple blocking operations outstanding;
but only one per thread. To distinguish between multiple outstanding calls,
WinHLLAPICancelBlockingCall cancels the outstanding operation on the current (i.e. calling)
application thread if one exists; otherwise it fails. By default under Windows NT, WinHLLAPI will
suspend the calling application thread while an operation is outstanding. As a result, the thread on
which the blocking operation was initiated will not regain control (and hence will not be able to issue a
call to WinHLLAPICancelBlockingCall) unless a blocking hook is registered for the thread using
WinHLLAPISetBlockingHook. This condition does not apply to Windows version 3.x since
applications only have one effective thread and the default blocking hook is registered by default.
int WinHLLAPICancelBlockingCall(void)

The return value indicates whether the cancellation request was successful. It is zero if the operation
was successful; otherwise it is one of the following return codes:

WHLLINVALID Indicates that there is no outstanding blocking call.

See also: WinHLLAPICancelAsyncRequest()

Syntax

Returns

civ Contents

WinHLLAPIStartup()
This function allows an application to specify the version of Windows HLLAPI required and to retrieve
details of the specific Windows HLLAPI implementation. This function MUST be called by an
application before issuing any further Windows HLLAPI calls to register itself with a Windows
HLLAPI implementation.
int WinHLLAPIStartup(WORD wVersionRequired, LPWHLLAPIDATA

 lpData)

In order to support future Windows HLLAPI implementations and applications that may have
functionality differences from Windows HLLAPI version 1.0, a negotiation takes place in
WinHLLAPIStartup(). An application passes to WinHLLAPIStartup() the Windows HLLAPI
version of which it can take advantage. If this version is lower than the lowest version supported by the
Windows HLLAPI DLL, then the DLL cannot support the application and the WinHLLAPIStartup()
call fails. Otherwise, the call succeeds and returns the highest version of Windows HLLAPI supported
by the DLL. If this version is lower than the lowest version supported by the application, the
application either fails its initialization or attempts to find another Windows HLLAPI DLL on the
system.
This negotiation allows both a Windows HLLAPI DLL and a Windows HLLAPI application to support
a range of Windows HLLAPI versions. An application can successfully use a DLL if there is any
overlap in the versions. The following chart gives examples of how WinHLLAPIStartup() works in
conjunction with different application and DLL versions:
Details of the actual Windows HLLAPI implementation are described in the WHLLAPIDATA
structure defined as follows:
typedef struct tagWHLLAPIDATA {

WORD wVersion;

char szDescription[WHLLDESCRIPTION_LEN+1];

} WHLLAPIDATA, * PWHLLAPIDATA, FAR * LPWHLLAPIDATA;

Syntax

Contents cv

App
versions

DLL
Versions

To
WinHLLAPI
Startup

From
WinHLLAPI
Startup Result

1.0 1.0 1.0 1.0 use 1.0

1.0 2.0 1.0 2.0 1.0 use 1.0

1.0 1.0 2.0 1.0 2.0 use 1.0

1.0 2.0 3.0 1.0 WHLLINVALID fail

2.0 3.0 1.0 3.0 1.0 app fails

1.0 2.0 3.0 1.0 2.0 3.0 3.0 3.0 use 3.0

Having made its last Windows HLLAPI call, an application should call the WinHLLAPICleanup()
routine.

Parameter Type Description

wVersionRequired WORD Specifies the version of Windows HLLAPI support
required. The high order byte specifies the minor
version (revision) number; the low-order byte
specifies the major version number.

lpData Structure Containing information about the underlying
Windows HLLAPI DLL implementation. The first
wVersion field has the same structure as the
wVersionRequired parameter and the
szDescription field contains a string identifying the
vendor of the Windows HLLAPI DLL. The
description field is only meant to provide a display
string for the application and should not be used to
programatically distinguish between Windows
HLLAPI implementations.

The return value indicates whether the application was registered successfully and whether the
Windows HLLAPI implementation can support the specified version number. It is zero if it was
registered successfully and the specified version can be supported; otherwise it is one of the following
return codes:

WHLLSYSNOTREADY Indicates that the underlying network subsystem is not
ready for network communication.

WHLLVERNOTSUPPORTED The version of Windows HLLAPI support requested is
not provided by this particular Windows HLLAPI
implementation.

WHLLINVALID The Windows HLLAPI version specified by the
application is not supported by this DLL.

Windows HLLAPI Supplier Notes
Each Windows HLLAPI implementation must make a WinHLLAPIStartup() call before issuing any
other Windows HLLAPI calls. This function can thus be used for initialization purposes.
See also: WinHLLAPICleanup()

Returns

cvi Contents

WinHLLAPISetBlockingHook()
This function installs a new function which a Windows HLLAPI Implementation should use to
implement blocking HLLAPI function calls.
This mechanism is provided to allow a Windows version 3.x application to make blocking calls without
blocking the rest of the system. By default under Windows NT, blocking calls will suspend the calling
application’s thread until the request completes. Therefore if a single-threaded application is targeted at
both Windows version 3.x and Windows NT and relies on this functionality it should register a
blocking hook even if the default hook would suffice.
FARPROC WinHLLAPISetBlockingHook(FARPROC lpBlockFunc)

A Windows HLLAPI Implementation has a default mechanism by which blocking HLLAPI functions
are implemented. This function gives the application the ability to execute its own function at blocking
time in place of the default function.

Parameter Type Description

lpBlockFunc FARPROC Specifies the procedure instance address of the
blocking function to be installed.

The default blocking function is equivalent to:
BOOL DefaultBlockingHook(void) {

 MSG msg;

 /* get the next message if any */

 if(PeekMessage(&msg,0,0,PM_NOREMOVE)) {

 if (msg.message == WM_QUIT)

 return FALSE; // let app process WM_QUIT

 PeekMessage(&msg,0,0,PM_REMOVE);

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 /* TRUE if no WM_QUIT received */

 return TRUE;

}

The WinHLLAPISetBlockingHook function is provided to support those applications which require
more complex message processing - for example, those employing the MDI (multiple document
interface) model.
Blocking functions must return FALSE if it receives a WM_QUIT message so WinHLLAPI can return
control to the application to process the message and terminate gracefully. Otherwise the function
should return TRUE.
The return value points to the procedure-instance of the previously installed blocking function. The
application or library that calls the SetBlockingHook function should save this return value so that it
can be restored if necessary. (If “nesting” is not important, the application may simply discard the
value returned by WinHLLAPISetBlockingHook and eventually use
WinHLLAPIUnhookBlockingHook to restore the default mechanism.)

Windows HLLAPI Supplier Notes
This function must be implemented on a per-thread basis. It thus provides for a particular thread to
replace the blocking mechanism without affecting other threads.
See also: WinHLLAPIUnhookBlockingHook()

Syntax

Description

Returns

Contents cvii

WinHLLAPIUnhookBlockingHook()
This function removes any previous blocking hook that has been installed and reinstalls the default
blocking mechanism.
BOOL WinHLLAPIUnhookBlockingHook(void)

The return value specifies the outcome of the function. It is nonzero if the default mechanism is
successfully reinstalled; otherwise it is zero.
See also: WinHLLAPISetBlockingHook()

Syntax

Returns

cviii Contents

A P P E N D I X A

/**\

* *

* whllapi.h - Windows HLLAPI functions, types, and definitions *

* *

* Version 1.0 *

* *

**/

/****** Function numbers **/

#define OEMFUNCTION 0 /* OEM Function */

#define CONNECTPS 1 /* Connect Presentation Space */

#define DISCONNECTPS 2 /* Disconnect Presentation Space */

#define SENDKEY 3 /* Send Key */

#define WAIT 4 /* Wait */

#define COPYPS 5 /* Copy Presentation Space */

#define SEARCHPS 6 /* Search Presentation Space */

#define QUERYCURSORLOC 7 /* Query Cursor Location */

#define COPYPSTOSTR 8 /* Copy Presentation Space To String */

#define SETSESSIONPARAMETERS 9 /* Set Session Parameters */

#define QUERYSESSIONS 10 /* Query Sessions */

#define RESERVE 11 /* Reserve */

#define RELEASE 12 /* Release */

#define COPYOIA 13 /* Copy OIA Information */

#define QUERYFIELDATTRIBUTE 14 /* Query Field Attribute */

#define COPYSTRTOPS 15 /* Copy String To Presentation Space */

#define STORAGEMGR 17 /* Storage Manager */

#define PAUSE 18 /* Pause */

#define QUERYSYSTEM 20 /* Query System */

#define RESETSYSTEM 21 /* Reset System */

#define QUERYSESSIONSTATUS 22 /* Query Session Status */

#define STARTHOSTNOTIFICATION 23 /* Start Host Notification */

#define QUERYHOSTUPDATE 24 /* Query Host Update */

#define STOPHOSTNOTIFICATION 25 /* Stop Host Notification */

#define SEARCHFIELD 30 /* Search Field */

#define FINDFIELDPOSITION 31 /* Find Field Position */

WHLLAPI.H - Definitions /
Declarations for the Windows
HLLAPI Specification

Contents cix

#define FINDFIELDLENGTH 32 /* Find Field Length */

#define COPYSTRINGTOFIELD 33 /* Copy String To Field */

#define COPYFIELDTOSTRING 34 /* Copy String To Field */

#define SETCURSOR 40 /* Set Cursor */

#define STARTCLOSEINTERCEPT 41 /* Start Close Intercept */

#define QUERYCLOSEINTERCEPT 42 /* Query Close Intercept */

#define STOPCLOSEINTERCEPT 43 /* Stop Close Intercept */

#define STARTKSINTERCEPT 50 /* Start Keystroke Intercept */

#define GETKEY 51 /* Get Key */

#define POSTINTERCEPTSTATUS 52 /* Post Intercept Status */

#define STOPKSINTERCEPT 53 /* Stop Keystroke Intercept */

#define LOCKPSAPI 60 /* Lock Presentation Space API */

#define LOCKWSAPI 61 /* Lock Window Services API */

#define SENDFILE 90 /* Send File */

#define RECEIVEFILE 91 /* Receive File */

#define CONVERT 99 /* Convert Position or RowCol */

#define CONNECTWINDOWSERVICES 101 /* Connect Window Services */

#define DISCONNECTWINDOWSERVICES 102 /* Disconnect Window Services */

#define QUERYWINDOWCOORDINATES 103 /* Query or Set Window Coordinates */

#define WINDOWSTATUS 104 /* Query or Set Window Status */

#define CHANGEPSNAME 105 /* Change Presentation Space Name */

#define CONNECTSTRFLDS 120 /* Connect Structured Fields */

#define DISCONSTRFLDS 121 /* Disconnect Structured Fields */

#define QUERYCOMMBUFSIZ 122 /* Query Communications Buffer Size */

#define ALLOCCOMMBUFF 123 /* Allocate Communications Buffer */

#define FREECOMMBUFF 124 /* Free Communications Buffer */

#define GETREQUESTCOMP 125 /* Get Request Completion */

#define READSTRFLDS 126 /* Read Structured Fields */

#define WRITESTRFLDS 127 /* Write Structured Fields */

/****** SetSessionParameters values ***/

#define WHLL_SSP_NEWRET (DWORD)0x00000001

#define WHLL_SSP_OLDRET (DWORD)0x00000002

#define WHLL_SSP_ATTRB (DWORD)0x00000004

#define WHLL_SSP_NOATTRB (DWORD)0x00000008

#define WHLL_SSP_NWAIT (DWORD)0x00000010

#define WHLL_SSP_LWAIT (DWORD)0x00000020

#define WHLL_SSP_TWAIT (DWORD)0x00000040

#define WHLL_SSP_EAB (DWORD)0x00000080

#define WHLL_SSP_NOEAB (DWORD)0x00000100

#define WHLL_SSP_AUTORESET (DWORD)0x00000200

#define WHLL_SSP_NORESET (DWORD)0x00000400

#define WHLL_SSP_SRCHALL (DWORD)0x00001000

#define WHLL_SSP_SRCHFROM (DWORD)0x00002000

#define WHLL_SSP_SRCHFRWD (DWORD)0x00004000

#define WHLL_SSP_SRCHBKWD (DWORD)0x00008000

#define WHLL_SSP_FPAUSE (DWORD)0x00010000

#define WHLL_SSP_IPAUSE (DWORD)0x00020000

cx Contents

/****** Convert Row or Column values **/

#define WHLL_CONVERT_POSITION 'P'

#define WHLL_CONVERT_ROW 'R'

/******* Storage Manager Sub-Function values ********************************/

#define WHLL_GETSTORAGE 1

#define WHLL_FREESTORAGE 2

#define WHLL_FREEALLSTORAGE 3

#define WHLL_QUERYFREESTORAGE 4

/****** Change PS Name values ***/

#define WHLL_CHANGEPSNAME_SET 0x01

#define WHLL_CHANGEPSNAME_RESET 0x02

/****** Window Status values **/

#define WHLL_WINDOWSTATUS_SET 0x01

#define WHLL_WINDOWSTATUS_QUERY 0x02

#define WHLL_WINDOWSTATUS_EXTQUERY 0x03

#define WHLL_WINDOWSTATUS_NULL 0x0000

#define WHLL_WINDOWSTATUS_SIZE 0x0001

#define WHLL_WINDOWSTATUS_MOVE 0x0002

#define WHLL_WINDOWSTATUS_ZORDER 0x0004

#define WHLL_WINDOWSTATUS_SHOW 0x0008

#define WHLL_WINDOWSTATUS_HIDE 0x0010

#define WHLL_WINDOWSTATUS_ACTIVATE 0x0080

#define WHLL_WINDOWSTATUS_DEACTIVATE 0x0100

#define WHLL_WINDOWSTATUS_MINIMIZE 0x0400

#define WHLL_WINDOWSTATUS_MAXIMIZE 0x0800

#define WHLL_WINDOWSTATUS_RESTORE 0x1000

#define WHLL_WINDOWSTATUS_FRONT (DWORD)0x00000003

#define WHLL_WINDOWSTATUS_BACK (DWORD)0x00000004

/****** Lock API values ***/

#define WHLL_LOCKAPI_LOCK 'L'

#define WHLL_LOCKAPI_UNLOCK 'U'

#define WHLL_LOCKAPI_RETURN 'R'

#define WHLL_LOCKAPI_QUEUE 'Q'

Contents cxi

/****** Windows HLLAPI Return Codes ***/

#define WHLLOK 0 /* Successful */

#define WHLLNOTCONNECTED 1 /* Not Connected To Presentation Space */

#define WHLLBLOCKNOTAVAIL 1 /* Requested size is not available */

#define WHLLPARAMETERERROR 2 /* Parameter Error/Invalid Function */

#define WHLLBLOCKIDINVALID 2 /* Invalid Block ID was specified */

#define WHLLFTXCOMPLETE 3 /* File Transfer Complete */

#define WHLLFTXSEGMENTED 4 /* File Transfer Complete / segmented */

#define WHLLPSBUSY 4 /* Presentation Space is Busy */

#define WHLLINHIBITED 5 /* Inhibited/Keyboard Locked */

#define WHLLTRUNCATED 6 /* Data Truncated */

#define WHLLPOSITIONERROR 7 /* Invalid Presentation Space Position */

#define WHLLNOTAVAILABLE 8 /* Unavailable Operation */

#define WHLLSYSERROR 9 /* System Error */

#define WHLLNOTSUPPORTED 10 /* Function Not Supported */

#define WHLLUNAVAILABLE 11 /* Resource is unavailable */

#define WHLLPSENDED 12 /* The session was stopped */

#define WHLLUNDEFINEDKEY 20 /* Undefined Key Combination */

#define WHLLOIAUPDATE 21 /* OIA Updated */

#define WHLLPSUPDATE 22 /* PS Updated */

#define WHLLBOTHUPDATE 23 /* Both PS And OIA Updated */

#define WHLLNOFIELD 24 /* No Such Field Found */

#define WHLLNOKEYSTROKES 25 /* No Keystrokes are available */

#define WHLLPSCHANGED 26 /* PS or OIA changed */

#define WHLLFTXABORTED 27 /* File transfer aborted */

#define WHLLZEROLENFIELD 28 /* Field length is zero */

#define WHLLKEYOVERFLOW 31 /* Keystroke overflow */

#define WHLLSFACONN 32 /* Other application already connected */

#define WHLLTRANCANCLI 34 /* Message sent inbound to host cancelled */

#define WHLLTRANCANCL 35 /* Outbound trans from host cancelled */

#define WHLLHOSTCLOST 36 /* Contact with host was lost */

#define WHLLOKDISABLED 37 /* The function was successful */

#define WHLLNOTCOMPLETE 38 /* The requested fn was not completed */

#define WHLLSFDDM 39 /* One DDM session already connected */

#define WHLLSFDPEND 40 /* Disconnected w async requests pending */

#define WHLLBUFFINUSE 41 /* Specified buffer currently in use */

#define WHLLNOMATCH 42 /* No matching request found */

#define WHLLLOCKERROR 43 /* API already locked or unlocked */

#define WHLLINVALIDFUNCTIONNUM 301 /* Invalid function number */

#define WHLLFILENOTFOUND 302 /* File Not Found */

#define WHLLACCESSDENIED 305 /* Access Denied */

#define WHLLMEMORY 308 /* Insufficient Memory */

#define WHLLINVALIDENVIRONMENT 310 /* Invalid environment */

#define WHLLINVALIDFORMAT 311 /* Invalid format */

#define WHLLINVALIDPSID 9998 /* Invalid Presentation Space ID */

#define WHLLINVALIDRC 9999 /* Invalid Row or Column Code */

cxii Contents

/****** Windows HLLAPI Extentions Return Codes ******************************/

#define WHLLALREADY 0xF000 /* An async call is already outstanding */

#define WHLLINVALID 0xF001 /* Async Task Id is invalid */

#define WHLLCANCEL 0xF002 /* Blocking call was cancelled */

#define WHLLSYSNOTREADY 0xF003 /* Underlying subsystem not started */

#define WHLLVERNOTSUPPORTED 0xF004 /* Application version not supported */

/****** Windows HLLAPI structure **/

#define WHLLDESCRIPTION_LEN 127

typdef struct tagWHLLAPIDATA {

WORDwVersion;

charszDescription[WHLLDESCRIPTION_LEN+1];

} WHLLAPIDATA, * PWHLLAPIDATA, FAR * LPWHLLAPIDATA;

/****** Windows HLLAPI Function Prototypes **********************************/

extern WORD WINAPI WinHLLAPI(lpWord, lpStr, lpWord, lpWord);

extern HANDLE WINAPI WinHLLAPIAsync(HWND, LPCSV);

extern BOOL WINAPI WinHLLAPICleanup(void);

extern BOOL WINAPI WinHLLAPIIsBlocking(void);

extern int WINAPI WinHLLAPICancelAsyncRequest(HANDLE, WORD);

extern int WINAPI WinHLLAPICancelBlockingCall(void);

extern int WINAPI WinHLLAPIStartup(WORD, LPWHLLAPIDATA);

extern FARPROC WINAPI WinHLLAPISetBlockingHook(FARnPROC);

extern BOOL WINAPI WinHLLAPIUnhookBlockingHook(void);

Contents cxiii

A P P E N D I X B

This appendix contains the following tables:
• 3270 and 5250 Character Attributes.
• 3270 and 5250 Character Color Attributes.
• 3270 and 5250 Field Attributes.

The attribute bit positions are in IBM format. The leftmost bit in the byte
is 0.

Attributes

Note

cxiv Contents

Character Attributes
3270 character attributes

Bit Position Meaning

0-1 Character highlighting
00 = Normal 10 = Reverse video
01 = Blink 11 = Underline

2-4 Character color (color remap may override this definition)
000 = Default 100 = Green
001 = Blue 101 = Turquoise
010 = Red 110 = Yellow
011 = Pink 111 = White

5-7 Reserved (not used)

5250 Character Attributes

Bit Position Meaning

0 Reverse image
0 = Normal 1 = Reverse

1 Underscore
0 = None 1 = Underscore

2 Blink
0 = None 1 = Blink

3 Column separators
0 = None 1 = Column separators

4-7 Reserved (not used)

Contents cxv

Character Color Attributes

Bit Position Meaning

0-3 Background character colors

0000 = Black 0100 = Red
0001 = Blue 0101 = Magenta
0010 = Green 0110 = Brown
0011 = Cyan 0111 = White

4-7 Foreground character colors

0000 = Black 1000 = Gray
0001 = Blue 1001 = Light blue
0010 = Green 1010 = Light green
0011 = Cyan 1011 = Light cyan
0100 = Red 1100 = Light red
0101 = Magenta 1101 = Light magenta
0110 = Brown 1110 = Yellow
0111 = White 1111 = High intensity white

cxvi Contents

Field Attributes
3270 field attributes

Bit Position Meaning

0-1 Both set to 1 (field attribute byte)

2 Unprotected/protected

0 = Unprotected data field

1 = Protected data field

3 Alpha/numeric

0 = Alphanumeric data

1 = Numeric data only

4-5 I/SPD

00 = Normal intensity, pen not detectable

01 = Normal intensity, pen detectable

10 = High intensity, pen detectable

11 = Non-display, pen not detectable

6 Reserved

7 MDT (Modified Data Tag)

0 = Field has not been modified

1 = Field has been modified

Contents cxvii

5250 field attributes

Bit Position Meaning

0 Field attribute flag

0=Not a field attribute

1=Field attribute byte

1 Visibility

0 = Non-display

1 = Display

2 Unprotected/protected

0 = Unprotected data field

1 = Protected data field

3 Intensity

0 = Normal

1 = High

4-6 Field Type

000 =Alphanumeric: all characters allowed

001 = Alphabetic only

010 = Numeric shift: automatic shift for numerics

011 = Numeric only

100=Reserved

101=Digits:

110=Magnetic stripe reader data only

111=Signed Numeric

7 MDT

0 = Field has not been modified

1 = Field has been modified

cxviii Contents

A P P E N D I X C

This appendix lists the WinHLLAPI functions defined in release 1.0 of IBM Extended Services for
OS/2 EHLLAPI Programming Reference but not required for WinHLLAPI compliance.

Extended Windows HLLAPI
Functions

Contents cxix

Allocate Communications Buffer—Function 123
This function allows the application to obtain exclusive control of a memory buffer to be used for read
and write structured field requests. A buffer address must be passed on to the functions that read and
write the structured field requests.

Prerequisite Functions
None.
WinHLLAPI(ALLOCCOMMBUFF,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String A 6-byte string with the following format:

Byte 1-2 16-bit buffer length requested.
(0<size<(64K-8)) or (0<size<X'FFF8')

Byte 3-6 Reserved.

Data Length Must be specified.

PS Position NA

Parameter Description

Data String A 6-byte string with the following format:

Byte 1-2 16-bit buffer length requested.

Byte 3-6 32-bit address of the allocated buffer.

Data Length NA (length of 8 is implied).

PS Position NA.

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected for window services.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLUNAVAILABLE The requested resource is not available.

The buffer address is placed in the returned parameter string. The requested buffer size, from 1 byte to
64K minus 8 bytes, is also in the parameter string. See the description of Query Communications
Buffer Size (122) for information regarding the size of the buffer.
Buffers obtained with this function cannot be shared among different processes. Applications that
attempt to share these buffers will experience unpredictable results.
Your Windows HLLAPI application must issue a Free Communications Buffer (124) function to free
the allocated memory for use by other programs.
The Reset System (21) function call frees any buffers allocated by this function.

No more than 10 buffers may be allocated to an application at one time.

Function Call

Call Parameters

Return Parameters

Return Codes

Remarks

Note

cxx Contents

When this limit is reached, additional requests to WinHLLAPI will return an 11,
indicating that the resource is unavailable.

Contents cxxi

Connect Structured Fields—Function 120
This function allows an application to establish a connection with a Host session.

Prerequisite Functions
None
WinHLLAPI(CONNECTSTRFLDS,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String An 11-byte string for returned semaphore address. The
first byte is a short name session ID of the session to
query, or space or null for the current session. Bytes 2-5
are the address of the query reply data buffer.

Byte 1 Short name session ID, or space or null
for the current session.

Byte 2-5 Four byte address of the query reply data
buffer.

Bytes 6-11 Reserved for return parameters.

Data Length Must be specified.

PS Position NA

Parameter Description

Data String An 11-byte string with the following format:

Byte 1 Short name session ID.

Bytes 2-5 4-byte address of the query reply data buffer.

Bytes 6-7 16-bit value which represents the
destination/origin ID returned to the
application by the emulator.

Bytes 8-11 Address of the semaphore with connection
status.

Function Call

Call Parameters

Return Parameters

cxxii Contents

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLNOTSUPPORTED The function is not supported by the emulation program.

WHLLSFACONN The function failed because another application is already
connected to this session.

WHLLSFDDM The function failed because a DDM session is already
connected to this session.

Windows HLLAPI scans the query reply buffers for the destination/origin ID (DOID) self-defining
parameter (SDP) to obtain the contents of the DOID field of the query reply (that the workstation must
supply). A value of X'0000' will cause the emulator to assign a DOID to the workstation application
and WinHLLAPI will fill in the DOID field of the query reply with the assigned ID. If the value
specified is non-zero, the emulator will assign the specified value as the workstation application’s
DOID, assuming that the ID has not been previously assigned. If the specified DOID is already in use,
a return code of 2 will be returned by WinHLLAPI.
The application must build the query reply data structures within the application’s private memory
space. See Appendix D, “Query Reply Data Structures for Windows HLLAPI” for detailed information
about structured field usage for the query reply data structures that are supported by WinHLLAPI.
The 2-byte length field at the beginning of each query reply must not be byte-reversed by the
application.
Cursory checking is performed on the query data reply (only the ID and the length of the structure are
checked for validity).
The semaphore determines if the state of the structured field connection is set (disabled) or clear
(enabled). If the emulator, for example, is in a state that allows processing of a structured field, the
semaphore will be clear. If the emulator cannot currently process a structured field, the semaphore will
be set. Be sure to check the status of the structured field semaphore before attempting a Read
Structured Field (126) or a Write Structured Field (127) function call.

Return Codes

Remarks

Contents cxxiii

The semaphore is set during the connect process because the emulator is in an inbound disabled state.
The semaphore is cleared for the first time when outbound data destined for the connecting DOID is
received by the emulator. Because the emulator is in an inbound disabled state, a host application
cannot be started via a Write Structured Fields (127) function call. The host application must be started
manually, or by issuing a Send Key (3).
Only one DDM base-type connection is allowed, per host session. If the DDM connection supports
SDP for the DOID, multiple connections are allowed.
If return code RC=32 or RC=39 is received, an application is already connected to the selected session,
and use of that presentation space should be very carefully approached. Otherwise, conflicts with File
Transfer or other Windows HLLAPI applications may occur.

Structured fields are not supported by the COBOL programming language
due to memory access problems inherent to the language.
Note

cxxiv Contents

Disconnect Structured Fields—Function 121
This function drops the connection between the Windows HLLAPI application and the specified
session.

Prerequisite Functions
Connect Structured Fields (function 120).
WinHLLAPI(DISCONSTRFLDS,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String A 3-byte string with the following format:

Byte 1 Short name session ID.

Bytes 2-3 A 16-bit value which represents the
destination/origin ID returned to the
application by the Connect Structured
Fields (120) function.

Data Length Must be user-specified.

PS Position NA.

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected for structured field access.

WHLLPARAMETERERROR An invalid parameter was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLSFDPEND The session was disconnected with asynchronous requests
pending.

When a Disconnect Structured Fields (121) is called, any active asynchronous Read Structured Fields
(126) or Write Structured Fields (127) function requests are returned if the application issues the Get
Request Completion (125) function call. Use the asynchronous form of this function when cleaning up
after issuing a Disconnect call.
Before exiting the application, you should request the Disconnect Structured Fields (121) function for
all emulation sessions that have been connected to using the Connect Structured Fields (120) function.
If the application exits with outstanding requests for structured field connections, the those outstanding
requests are cancelled. The Reset System (21) function also causes any outstanding requests to be
cancelled before disconnecting from structured fields.
Any outstanding asynchronous requests that have not been retrieved by the application using the Get
Request Completion (125) function are cleared by the Reset System (21) function, or when
WinHLLAPI is initialized again.

Structured fields are not supported by the COBOL programming language
due to memory access problems inherent to the language.

Function Call

Call Parameters

Return Codes

Remarks

Note

Contents cxxv

Free Communications Buffer—Function 124
This function allows the application to release exclusive control of a buffer that is no longer required by
the application.

Prerequisite Functions
Allocate Communications Buffer (123).
WinHLLAPI(FREECOMMBUFF,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String A 6-byte string with the following format:

Byte 1-2 16-bit length of the buffer to be freed. If the
value of the length specified is 0, the entire
buffer is freed.

Byte 3-6 32-bit address of the buffer obtained from
call to Allocate Communications Buffer
(123).

Data Length Must be specified.

PS Position NA

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLBUFFINUSE The specified buffer is currently in use.

If the application attempts to free a buffer in which the buffer address plus the buffer length overlaps a
buffer currently in use, the request is denied and the return code value of 41 (requested buffer in use) is
returned. If the application attempts to free an entire selector that contains a buffer in use, the request
is also denied and the return code value 41 is returned to the application.
Before exiting an application, you should issue the Free Communications Buffer function call for all
communications buffers that have been allocated using the Allocate Communications Buffer (123)
function. If the application exits without freeing the buffers, WinHLLAPI will free them when the
application exits.
Buffers can also be freed by the Reset System (21) function.

Function Call

Call Parameters

Return Code

Remarks

cxxvi Contents

Get Request Completion—Function 125
This function allows the application to determine the status of a previous asynchronous function
request issued to WinHLLAPI, and obtains the function parameter list before using the data string
again.

Prerequisite Functions
Connect Structured Fields (120) and either Read Structured Fields (126) or Write Structured Fields
(127).
WinHLLAPI(GETREQUESTCOMP,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String A 14-byte string with the following format:

Byte 1 A 1-character session short name.

Byte 2 One of the following:
N (no wait)
W (wait)

Bytes 3-4 A 16-bit word (2 bytes) into which the
function request ID has been placed.

Bytes 5-14 Reserved for returned parameters

Data Length NA (defaults to 14).

PS Position NA.

Parameter Description

Data String If the return code from this function is 0:

Bytes 5-6 Two bytes containing the function code of the
completed async function.

Bytes 7-10 Four bytes containing the address of the data
string of the completed async function call. The
application must not reuse the data string until the
request has completed.

Bytes 11-12 Two bytes containing the length of the data string
of the completed async function.

Bytes 13-14 Two bytes containing the return code of the
completed async function.

Function Call

Call Parameters

Return Parameters

Contents cxxvii

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLNOTCOMPLETE The requested function was not completed.

WHLLNOMATCH A matching request was not found.

The difference between returns of WHLLNOTCOMPLETE and WHLLNOMATCH:
WHLLNOTCOMPLETE

If a specific Request ID and session were requested, the session and the ID were
found but the request is pending (not yet in a completed state).

If a zero Request ID and specific session were requested, the specified session
has pending requests that were not satisfied (completed).

If a Request ID and a blank session were requested, pending requests were
found, but none were satisfied.

WHLLNOMATCH
If a specific Request ID and session were requested, the specific ID was not
found in either a pending or completed state.

If a zero Request ID and specific session were requested, the specified session
has no pending or completed requests.

If a Request ID and a blank session were requested, no pending or completed
requests were found.

This function is valid only if the user specified asynchronous completion (A) on a previous function
call such as Read Structured Fields (126) or Write Structured Fields (127).
Each asynchronous request that requires the Get Request Completion (125) function returns a unique
ID from the asynchronous request. The application must save this ID. This ID is the identification used
by the Get Request Completion (125) function to identify the request.

Return Codes

Remarks

cxxviii Contents

The user specifies whether the application can query of wait for one of the following:
u A specific asynchronous function request by supplying the Request ID of that

function and a non-blank session short name.

u The first completed asynchronous function request by supplying a Request ID of
0x0000 and a blank session short name.

u The first completed asynchronous function request for a specified session by
supplying a Request ID of 0x0000 and a non-blank session short name.

u The Get Request Completion (125) function behaves differently depending upon
the second character of the parameter string, which is one of the following:

N (no wait)
If a specific Request ID was supplied and the function completed, control is
returned to the application with a return code of zero and a completed data string
as defined previously. If a Request ID of 0x0000 was supplied and any eligible
asynchronous function has completed, control is returned to the application with
a return code of zero and a completed data string as defined previously. If a
function has not completed, control is returned to the calling application with a
non-zero return code.

W (wait)
If a specific Request ID was supplied and the function has completed:

u The semaphore is cleared

Control is returned to the application with a return code of zero and a completed
data string as defined previously

If a Request ID of zero was supplied any eligible function has completed:

u The semaphore is cleared

Control is returned to the application with a return code of zero and a completed
data string as defined previously

If a function has not completed, the call waits until a function completes before
returning to the application. When it returns, the return code is zero and the data
string is completed.

Contents cxxix

If a nonzero Request ID is supplied, this function checks for the completion of only the function
associated with the ID.
If the return code is zero, the application should check the returned data string for information
pertaining to the completion of the requested asynchronous function.

The communications subsystem allows for a maximum of 20 asynchronous
requests per application to be outstanding. A return code for unavailable resources
(RC = 11) is returned if more than 20 asynchronous requests are attempted.

Note

cxxx Contents

Lock Presentation Space API—Function 60
This function allows the application to obtain or release exclusive control of the presentation space.

Prerequisite Functions
Connect Presentation Space (function 1).
WinHLLAPI(LOCKPSAPI,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String Locking parameters - a 3-byte string with the following
format:

Byte 1 Short name session ID, or space or null for
the current session.

Byte 2 One of the following:

u WHLL_LOCKAPI_LOCK to lock the
API.

u WHLL_LOCKAPI_UNLOCK to unlock
the API.

Byte 3 One of the following:

u WHLL_LOCKAPI_RETURN to return if
the API is already locked.

u WHLL_LOCKAPI_QUEUE to queue the
lock request if the API is already locked.

Data Length Must be specified (normally 3).

PS Position NA.

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLNOTSUPPORTED The function was not supported by the emulation
program.

WHLLPSENDED The session stopped.

WHLLLOCKERROR If _LOCK, the API was already locked.
If _UNLOCK, the API was not locked.

If the API is locked, the WinHLLAPI functions are rejected until the API is unlocked by using the
_UNLOCK option, or by disconnecting or resetting the presentation space.

Function Call

Call Parameters

Return Codes

Remarks

Contents cxxxi

Lock Window Services API—Function 61
This function allows the application to obtain or release exclusive control of the presentation space
window services.

Prerequisite Functions
Connect Window Services (function 101).
WinHLLAPI(LOCKWSAPI,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String Locking parameters - a 3-byte string with the following
format:

Byte 1 Short name session ID, or space or null for the
current session.

Byte 2 One of the following:

u WHLL_LOCKAPI_LOCK to lock the API.

u WHLL_LOCKAPI_UNLOCK to unlock the
API.

Byte 3 One of the following:

u WHLL_LOCKAPI_RETURN to return if
the API is already locked.

u WHLL_LOCKAPI_QUEUE to queue the
lock request if the API is already locked.

Data Length Must be specified (normally 3).

PS Position NA.

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected for window services.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLNOTSUPPORTED The function was not supported by the emulation program.

WHLLPSENDED The session stopped.

WHLLLOCKERROR If _LOCK, the API was already locked.
If _UNLOCK, the API was not locked.

If the API is locked, Window Services functions are rejected until the API is unlocked by using the
UNLOCK option, or by disconnecting or resetting the presentation space.

Function Call

Call Parameters

Return Codes

Remarks

cxxxii Contents

Query Communication Buffer Size—Function 122
This function allows the application to determine the maximum and optimum inbound and outbound
buffer size supported by the communications engine. These buffer sizes are to be used with the
Allocate Communications Buffer (123) function to optimize the performance of the structured field
functions.

Prerequisite Functions
None.
WinHLLAPI(QUERYCOMMBUFSIZ,lpbyString,lpwLength,

lpwReturnnCode)

Parameter Description

Data String A 9-byte string with the following format:

Byte 1 Short name session ID.

Bytes 2-9 Reserved.

Data Length Must be specified.

PS Position NA.

Parameter Description

Data String A 9-byte string with the following format:

Byte 1 Short name session ID.

Bytes 2-3 16-bit value indicating optimum inbound
buffer size.

Bytes 4-5 16-bit value indicating maximum inbound
buffer size.

Bytes 6-7 16-bit value indicating optimum outbound
buffer size.

Bytes 8-9 16-bit value indicating maximum outbound
buffer size.

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected for window services.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLNOTSUPPORTED The function is not supported by the emulation program.

The buffer sizes that are returned represent the record sizes transmitted across the communications
medium. For a DDM connection, the 8-byte header supplied in the Read and Write structured fields
data buffer is stripped off and 1 byte containing the structured field AID value is prefixed. The
application should compare the size of the actual data in the data buffer (which does not include the 8-
byte header) to the buffer sizes returned by the Query Communications Buffer Size function minus 1

Function Call

Call Parameters

Return Parameters

Return Codes

Remarks

Contents cxxxiii

byte. For destination/origin connections, the 8-byte header supplied in the Read or Write structured
fields data buffer is stripped and 9 bytes are then prefixed to the data. The application should compare
the size of the actual data in the data buffer (not including the 8-byte header) to the buffer size returned
from the Query Communications Buffer Size (122) function minus 9 bytes.
The maximum buffer sizes represent the maximum number of bytes supported by the PS hardware,
and the maximum number of bytes supported by the emulator. The application may use the maximum
buffer size only if the host system is also configured to accept that size.
The optimum buffer sizes represent the optimal number of bytes supported by both the PC hardware,
and the emulator.
If the network configuration sets transmission limits smaller than the optimum buffer size values, the
Query Communications Buffer Size (122) call reflects the data transfer buffer size from the current
configuration profile.

cxxxiv Contents

Read Structured Fields—Function 126
This function receives structured field data from the host application.
If the call specifies asynchronous (A), the application receives control immediately after the call, even if
host data is not available. If the call specifies synchronous (S), WinHLLAPI waits for host data to
become available before returning control to the application.
The application provides the buffer address in which data from the host is to be placed. The buffer
must be obtained using the Allocate Communications Buffer (123) function call.

Prerequisite Functions
Connect Structured Fields (function 120).
Allocate Communications Buffer (function 123).
WinHLLAPI(READSTRFLDS,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String An 8-byte string for synchronous, or a 14-byte string for
asynchronous in the following format:

Byte 1 A 1-character session short name.

Byte 2 A 1-character specifying the control
option
S (synchronous control) - control is not
returned to the application until the read
is satisfied.
A (asynchronous control) - control is
returned immediately to the application.

Bytes 3-4 The 16-bit word unique
destination/origin ID returned by the
Connect Structured Fields (120)
function call.

Bytes 5-8 The 4-byte value of the buffer address
into which the data is to be read. The
buffer must be obtained using the
Allocate Communications Buffer (123)
function call.

Data Length Must be 8 or 14.

PS Position NA.

Function Call

Call Parameters

Contents cxxxv

Parameter Description

Data String When the A (asynchronous) control option is specified and
the request is successfully completed, the following are
returned:

Bytes 9-10 A 16-bit value representing the
destination/origin ID returned to the
application by the emulator. This function
request ID is used by the Get Request
Completion (125) function to determine the
status of this function call.

Bytes 11-14 A 4-byte value in which the semaphore
address is returned by WinHLLAPI. The
application may wait upon this semaphore.
When the semaphore is cleared, the
application must issue the Get Request
Completion (125) function call.

A semaphore address is returned for each successful asynchronous request.
The semaphore should not be used again, A new semaphore is returned for each
request and is valid for only the duration of that request.

There is no returned data string for the S (synchronous) control option.

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected or the DOID was incorrect.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLUNAVAILABLE The requested resource was not available.

WHLLTRANCANCL An outbound transmission from the host was canceled.

WHLLHOSTCLOST Contact with the host was lost.

WHLLOKDISABLED The function was successful.

The host inbound transmission is disabled.

Return Parameters

Note

Note

Return Codes

Warning

cxxxvi Contents

The application must correct the situation if one of the following return codes is specified:

WHLLTRANCANCL Is returned if the first Read Structured Fields (126) or Write
Structured Fields (127) is requested after an outbound
transmission from the host is canceled.

WHLLHOSTCLOST Which requires the application to disconnect from the
communications subsystem and reconnect to establish
communications with the host again.

WHLLOKDISABLED Which is returned if the host is inbound disabled.

When the call to Read Structured Fields (126) is complete, the Read Buffer, whose address was
specified in positions 5-8 of the data string, will contain the structured fields received from the host
application.
The format of the Read Buffer is as follows:

Position Meaning

Bytes 0-1 A 16-bit value - 0x0000.

Bytes 2-3 A 16-bit value which contains the Message length (m), which is the
number of bytes of data in the message not including the 8-byte message
header. This value is returned by the subsystem.

Bytes 4-5 A 16-bit value which contains the Buffer Size (n), which is the supplied
length of the data buffer not including the 8-byte message header.

Bytes 6-7 A 16-bit value - 0xC000

Bytes 8-9 A 16-bit value which contains the Length of the first or only structured
field message (not byte-reversed).

Byte 10 First non-length byte of the structured field message.

Byte m Last byte in the structured field message.

Bytes 0-7 are the buffer header, which is passed to and used by the communications subsystem. The
application must prepare the buffer header before using it in the structured fields call. The word at
position 0 must be set to a value of zero. The length of the buffer, requested with the Allocate
Communications Buffer (123) function, must be in the word at position 4. The word at position 6 must
be set to 0xC000.

Remarks

Contents cxxxvii

Bytes 8-m are where the structured field messages are returned. The following occurs when the call is
returned:
u The word at position 2 contains the length (8-m) of the structured field

messages.

u The word at position 8 contains the length of the first structured field message.
Bytes 10-m contain the actual data of the structured field message.

Synchronous Requests
When Read Structured Fields (126) is requested synchronously (the S option in the data string),
control is returned to the application only after the request is satisfied. The application can assume:
u The return code is correct.

u The data in the communications buffer (read buffer) is correct.

u The host is no longer processing the Read Structured Fields (126) request.

Asynchronous Requests
When Read Structured Fields (126) is requested asynchronously (the A option in the data string), the
application cannot assume:
u The return code is correct.

u The data in the communications buffer (read buffer) is correct.

u The host is no longer processing the Read Structured Fields (126) request.
When requested asynchronously, WinHLLAPI returns the following:
u A 16-bit Request ID in positions 2-3 of the data string.

u The address of a semaphore in positions 4 - 7 of the data string.
These are used to complete the asynchronous Read Structured Fields (126) call.

cxxxviii Contents

The following steps must be completed to determine the outcome of an asynchronous Read Structured
Fields (126) function call:
u If the WinHLLAPI return code is not zero, the request failed. No asynchronous

request has been made. The application must take appropriate actions before
attempting the call again.

u If the return code is zero, the application should wait until the semaphore is
cleared by using the Get Request Completion (125) function. The semaphore
should not be freed (this done by the Get Request Completion (125) function)
and should not be reused. The semaphore is only valid for the duration of the
Read Structured Fields (126) function call through the completion of the Get
Request Completion (125) function call.

u Once the semaphore is cleared, use the returned 16-bit Request ID as the
Request ID parameter in a call to the Get Request Completion (125) function.
The data string returned from the Get Request Completion (125) function call
contains the final return code of the Read Structured Fields (126) function call.

The communications subsystem allows for a maximum of 20 asynchronous
requests per application to be outstanding. A return code for unavailable resources
(RC= 11) is returned if more than 20 asynchronous requests are attempted.

Structured fields are not supported by the COBOL programming language
due to memory access problems inherent to the language.

Note

Note

Contents cxxxix

Storage Manager—Function 17
This function allows your application elementary control of blocks of memory for use with the
Windows HLLAPI function calls.
The Storage Manager (17) function allows easy migration of existing applications (typically BASIC
interpreter applications) that use Storage Manager (17) functions. The new BASIC applications can
use this function, but are not required to. The other supported languages may also use this function.
There are four available sub-functions to the Storage Manager (17) function:
u Get Storage

u Free Storage

u Free All Storage

u Query Free Storage
Each of the sub-functions has supplied parameters and returned parameters, and generates a set of
possible return codes. These sub-functions are discussed in detail in the following pages.
WinHLLAPI returns a return code of WHLLPARAMETERERROR for an invalid sub-function
number. The sub-functions are identified to WinHLLAPI by the sub-function number being placed in
the PS Position calling parameter.
Storage Manager (17) may allocate blocks from 16 bytes to 64 Kbytes in size. The Storage Manager
(17) function does not allocate shared memory.
WinHLLAPI lists the results of the Storage Manager (17) function and places them into a table. Once a
request to Get Storage is placed into the table, WinHLLAPI checks the table for free bytes to satisfy the
current request. If there is sufficient storage, the free block is marked allocated and is given to the user.
If there is not sufficient storage, the user should take what steps are necessary to allocate the memory
via normal operating system calls.
When a Free Storage call is made, the specified block is then marked as free in the table.
If a Free All Storage call is made, all blocks in the table are marked as free, and no more use may be
made by the application of blocks previously acquired from Get Storage.
A Query Free Storage call returns the size of the single largest area that is currently available.
None.

Get Storage
The Get Storage sub-function allocates a block of storage to be used by the calling Windows HLLAPI
application.
WinHLLAPI(STORAGEMGR,lpbyString,lpwLength,GETSTORAGE)

Parameter Description

Data String A 4-byte string.

Data Length Size (in bytes) of the requested storage area.

PS Position 01 (GETSTORAGE)

Parameter Description

Data String The storage address is expressed as two binary words: offset
and selector. The offset first, then the selector.

Data Length Storage Block ID of the requested storage area.

Code Description

WHLLOK The requested storage was allocated.

Prerequisite
Functions

Function Call

Call Parameters

Return Parameters

Return Codes

cxl Contents

WHLLBLOCKNOTAVAIL You requested more storage than is available.

WHLLSYSERROR The function failed due to a system error. Any time results
are unpredictable.

WHLLNOTSUPPORTED The function was not supported by the emulation program.

Free Storage
The Free Storage sub-function frees the block of storage allocated by the Get Storage sub-function.
WinHLLAPI(STORAGEMGR,lpbyString,lpwLength,FREESTORAGE)

Parameter Description

Data String NA

Data Length Storage Block ID of area to be freed.

PS Position 02 (FREESTORAGE)

Parameter Description

WHLLOK The specified block was freed.

WHLLNOTCONNECTED You requested more storage than is available.

WHLLSYSERROR The function failed due to a system error. Any time results are
unpredictable.

WHLLNOTSUPPORTED The function was not supported by the emulation program.

Free All Storage
The Free All Storage sub-function frees all allocated blocks of storage.
WinHLLAPI(STORAGEMGR,lpbyString,lpwLength,FREEALLSTORAGE)

Parameter Description

Data String NA

Data Length NA

PS Position 04 (FREEALLSTORAGE)

Parameter Description

WHLLOK The function was successful. All blocks have been freed.

WHLLSYSERROR The function failed due to a system error. Any time results are
unpredictable.

WHLLNOTSUPPORTED The function was not supported by the emulation program.

Query Free Storage
The Query Free Storage sub-function returns the size (in bytes) of the largest single available block of
storage available to the calling Windows HLLAPI application. This value must be over 16 to be used
by the Get Storage sub-function.
WinHLLAPI(STORAGEMGR,lpbyString,lpwLength,

QUERYFREESTORAGE)

Function Call

Call Parameters

Return Parameters

Function Call

Call Parameters

Return Parameters

Function Call

Contents cxli

Parameter Description

Data String NA

Data Length NA

PS Position 03 (QUERYFREESTORAGE)

Parameter Description

Data Length Size of the largest block available. (0xFFFF indicates a full
64 Kbytes)

Code Description

WHLLOK The Query was successful.

WHLLSYSERROR The function failed due to a system error. Any time results
are unpredictable.

WHLLNOTSUPPORTED The function was not supported by the emulation program.

Call Parameters

Return Parameters

Return Codes

cxlii Contents

Write Structured Fields—Function 127
This function writes structured field data from the Windows HLLAPI application to the host
application.
If the call specifies asynchronous (A), the application receives control as soon as the request has been
successfully queued to the subsystem. If the call specifies synchronous (S), WinHLLAPI waits for the
host to acknowledge receipt of data before returning control to the application
The application provides the buffer address from which data is sent to the host. The buffer must be
obtained using the Allocate Communications Buffer (123) function call.

Prerequisite Functions
Connect Structured Fields (function 120).
Allocate Communications Buffer (function 123).
WinHLLAPI(WRITESTRFLDS,lpbyString,lpwLength,lpwReturnnCode)

Parameter Description

Data String An 8-byte string for synchronous, or a 14-byte string for
asynchronous in the following format:

Byte 1 A 1-character session short name.

Bytes 2 A 1-character specifying the control
option:

u S (synchronous control) - control is
not returned to the application until
the read is satisfied.

u A (asynchronous control) - control is
returned immediately to the
application.

Bytes 3-4 The 16-bit word unique
destination/origin ID returned by the
Connect Structured Fields (120)
function call.

Bytes 5-8 The 4-byte value of the buffer address
into which the data is to be read. The
buffer must be obtained using the
Allocate Communications Buffer (123)
function call.

Data Length Must be 8 or 14.

PS Position NA.

Parameter Description

Data String When the A (asynchronous) control option is specified
and the request is successfully completed, the following
are returned:

Function Call

Call Parameters

Return Parameters

Contents cxliii

Bytes 9-10 A 16-bit value representing the
destination/origin ID returned to the
application by the emulator. This
function request ID is used by the Get
Request Completion (125) function to
determine the status of this function call.

Bytes 11-14 A 4-byte value in which the semaphore
address is returned by WINHLLAPI.
The application may wait upon this
semaphore. When the semaphore is
cleared, the application must issue the
Get Request Completion (125) function
call.

A semaphore address is returned for each successful asynchronous request.
The semaphore should not be used again, A new semaphore is returned for each
request and is valid for only the duration of that request.

There is no returned data string for the S (synchronous) control option.

Code Description

WHLLOK The function was successful.

WHLLNOTCONNECTED An invalid presentation space was specified, or was not
connected or the DOID was incorrect.

WHLLPARAMETERERROR An invalid option was specified.

WHLLSYSERROR The function failed due to a system error.

WHLLUNAVAILABLE The requested resource was not available.

WHLLTRANCANCLI An inbound transmission to the host was canceled.

WHLLTRANCANCL An outbound transmission from the host was canceled.

WHLLHOSTCLOST Contact with the host was lost.

WHLLOKDISABLED The function was successful. Warning: The host inbound
transmission is disabled.

Note

Note

Return Codes

cxliv Contents

The application must correct the situation if one of the following return codes is specified:

Code Description

WHLLTRANCANCL Is returned if the first Read Structured Fields (126) or
Write Structured Fields (127) is requested after an
outbound transmission from the host is canceled.

WHLLHOSTCLOST Which requires the application to disconnect from the
communications subsystem and reconnect to establish
communications with the host again.

WHLLOKDISABLED Which is returned if the host is inbound disabled.

When the call to Read Structured Fields (126) is complete, the Read Buffer, whose address was
specified in positions 5-8 of the data string, will contain the structured fields received from the host
application.
The format of the Read Buffer is as follows:

Position Meaning

Bytes 0-1 A 16-bit value - 0x0000.

Bytes 2-3 A 16-bit value which contains the Message length (m), which is the
number of bytes of data in the message not including the 8-byte
message header. This value is returned by the subsystem.

Bytes 4-5 A 16-bit value which contains the Buffer Size (n), which is the
supplied length of the data buffer not including the 8-byte message
header.

Bytes 6-7 A 16-bit value - 0xC000

Bytes 8-9 A 16-bit value which contains the Length of the first or only structured
field message (not byte-reversed).

Byte 10 First non-length byte of the structured field message.

Byte m Last byte in the structured field message.

Bytes 0-7 are the buffer header, which is passed to and used by the communications subsystem. The
application must prepare the buffer header before using it in the structured fields call. The word at
position 0 must be set to a value of zero. The length of the buffer, requested with the Allocate
Communications Buffer (123) function, must be in the word at position 4. The word at position 6 must
be set to 0xC000.

Remarks

Contents cxlv

Bytes 8-m are where the structured field messages are returned. The following occurs when the call is
returned:
u The word at position 2 contains the length (8-m) of the structured field

messages.

u The word at position 8 contains the length of the first structured field message.

u Bytes 10-m contain the actual data of the structured field message.

Synchronous Requests
When Write Structured Fields (127) is requested synchronously (the S option in the data string),
control is returned to the application only after the request is satisfied. The application can assume:
u The return code is correct.

u The data in the communications buffer (read buffer) is correct.

u The host is no longer processing the Write Structured Fields (127) request.

Asynchronous Requests
When Write Structured Fields (127) is requested asynchronously (the A option in the data string), the
application cannot assume:
u The return code is correct.

u The data in the communications buffer (read buffer) is correct.

u The host is no longer processing the Write Structured Fields (127) request.
When requested asynchronously, WinHLLAPI returns the following:
u A 16-bit Request ID in positions 2-3 of the data string.

u The address of a semaphore in positions 4 - 7 of the data string.
These are used to complete the asynchronous Write Structured Fields (127) call.

cxlvi Contents

The following steps must be completed to determine the outcome of an asynchronous Write Structured
Fields (127) function call:
u If the WinHLLAPI return code is not zero, the request failed. No asynchronous

request has been made. The application must take appropriate actions before
attempting the call again.

u If the return code is zero, the application should wait until the semaphore is
cleared by using the Get Request Completion (125) function. The semaphore
should not be freed (this done by the Get Request Completion (125) function)
and should not be reused. The semaphore is only valid for the duration of the
Read Structured Fields (126) function call through the completion of the Get
Request Completion (125) function call.

u Once the semaphore is cleared, use the returned 16-bit Request ID as the
Request ID parameter in a call to the Get Request Completion (125) function.
The data string returned from the Get Request Completion (125) function call
contains the final return code of the Write Structured Fields (127) function call.

The communications subsystem allows for a maximum of 20 asynchronous
requests per application to be outstanding. A return code for unavailable resources
(RC= 11) is returned if more than 20 asynchronous requests are attempted.

Structured fields are not supported by the COBOL programming language
due to memory access problems inherent to the language.

Note

Note

Contents cxlvii

A P P E N D I X D

This appendix lists and defines the query reply structures supported by the Windows HLLAPI
structured field interface. See the IBM 3270 Information Display System Data Stream Programmer’s
Guide for additional information on Query Reply Data Structures.
1. WinHLLAPI must scan the query reply buffers to locate the destination/origin

ID (DOID) self-defining parameter (SDP) for the structured field support to
work and be reliable. The DOID field is then filled in with the assigned ID.

2. The application should build the query reply data structures in the application’s
private memory.

3. Only cursory checking is performed on the query reply data. Only the ID and the
length of the structure are checked for validity.

4. The 2-byte length field at the beginning of each query reply is not byte-reversed.

5. Only one distributed data management (DDM) base-type connection is allowed
per host session. If the DDM connection supports the SDP for the DOID, then
multiple connections are allowed.

6. If a nonzero return code is received indicating that an application is already
connected to the selected session (RC 32 or 39), use of that presentation space
should be with caution. Conflicts file transfer and other Windows HLLAPI
applications may result.

Query Reply Data Structures for
Windows HLLAPI

cxlviii Contents

The DDM Query Reply
Several DDM query reply formats will be supported. Some of these formats are listed below:

Table D-l. DDM Query Reply Base Format

Offset Length Content Meaning

0 1 word Length Length of Structure

2 1 byte 0x81 Query Reply ID

3 1 byte 0x95 Query Reply Type

4-5 2 bytes FLAGS Reserved

6-7 2 bytes LIMIN Maximum DDM bytes allowed in inbound
transmission

8-9 2 bytes LIMOUT Maximum DDM bytes allowed in
outbound transmission

10 1 byte NSS Number of subsets identifier

11 1 byte DDMSS DDM subset identifier

DDM Application Name Self-Defining Parameter
The DDM Application Name self-defining parameter provides the host application with the name of
the application containing control of the DDM Auxiliary Device. The controlling application is
identified by the DOID in the Direct Access self-defining parameter.
This SDP is optional, but it is necessary if a host application is to identify distinct DDM auxiliary
devices when more than one application is in existence at a remote workstation.

Table D-2. DDM Application Name SDP

Offset Length Content Meaning

0 1 byte Length Parameter Length

1 1 byte 0x02 DDM Application Name

2-n n-2 bytes NAME Name of Remote Application Program

NAME: The name consists of 8 characters or less and is the means by which a host application may
relate to an application in a remote workstation. It is the responsibility of the host and remote
application users to ensure that the name is understood by the applications at each end.

PCLK Protocol Controls Self-Defining Parameter
The PCLK (PC link) Protocol Controls self-defining parameter indicates that the PCLK Protocol
Controls structured field, ID = X'1013', can be used both inbound and outbound in data streams
destined to or from the DDM auxiliary device processor.

Table D-3. DDM PCLK Auxiliary Device SDP

Offset Length Content Meaning

0 1 byte 0x04 Parameter Length

1 1 byte 0x03 PCLK Protocol Controls

2-n n-2 bytes VERS Protocol Version

Contents cxlix

VERS: The value given in VERS is used to indicate the version of PCLK installed in the terminal at
the time the query reply is returned. For example, 0x0001 indicates PCLK version 1.1.
See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field
definitions for this query reply.

Base DDM Query Reply Formats
The following query reply formats are examples of some of the Base + SDP combinations possible. Not
all of the combinations are shown.

Table D-4. Base DDM Query Reply Format with Name and Direct Access SDPs

Offset Length Content Meaning

0 1 word Length Length of structure (includes SDPs)

2 1 byte 0x81 Query Reply ID

3 1 byte 0x95 Query Reply Type

4-5 2 bytes FLAGS Reserved

6-7 2 bytes LIMIN Maximum DDM bytes allowed in
inbound transmission

8-9 2 bytes LIMOUT Maximum DDM bytes allowed in
outbound transmission

10 1 byte NSS Number of subsets supported

11 1 byte DDMSS DDM subset identifier

12 1 byte Length
(n+2)

Parameter Length

13 1 byte 0x02 DDM Application Name

cl Contents

Table D-4. Base DDM Query Reply Format with Name and Direct Access SDPs
(continued)

Offset Length Content Meaning

14 -(13+n) n bytes Name Name of the Remote Application
Program

14 + n 1 byte 0x04 Parameter Length

15 + n 1 byte 0x01 Direct Access ID

16+n - 17+n n-2 bytes VERS Destination/Origin ID assigned by the
subsystem

The SDPs begin at offsets 12 and (14 + n) where “n” is the length of the application name supplied at
offset 14.
See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field
definitions for this query reply.

Table D-5. Base DDM Query Reply Format with Direct Access and Name SDPs

Offset Length Content Meaning

0 1 word Length Length of structure (includes SDPs)

2 1 byte 0x81 Query Reply ID

3 1 byte 0x95 Query Reply Type

4-5 2 bytes FLAGS Reserved

6-7 2 bytes LIMIN Maximum DDM bytes allowed in
inbound transmission

8-9 2 bytes LIMOUT Maximum DDM bytes allowed in
outbound transmission

10 1 byte NSS Number of subsets supported

11 1 byte DDMSS DDM subset identifier

12 1 byte 0x04 Parameter Length

13 1 byte 0x01 Direct Access ID

14-15 2 bytes DOID Destination/Origin ID assigned by the
subsystem

16 1 byte Length
(n+2)

Parameter Length

17 1 byte 0x02 Direct Access ID

16+n - 17+n n bytes Name Name of the Remote Application
Program

Contents cli

The SDPs begin at offsets 12 and 16.
See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field
definitions for this query reply.

The IBM Auxiliary Device Query Reply
The Auxiliary Device Query Reply is used to indicate to the host application the support of an IBM
auxiliary device, which uses a data stream defined by IBM. See the IBM 3270 Data Stream
Programmer’s Reference Manual for more information.
When the function is supported, the query reply is transmitted inbound in reply to a Read Partition
structured field specifying Query or Query List (QCODE List = 0x9E, Equivalent, or All).
When a workstation supports multiple auxiliary devices, the IBM Auxiliary Device Query Reply must
be sent for each of the devices.
Optional Parameters: All parameters shown in the base part of the query reply must be present.
Parameters not used are set to 0x100. At least one self-defining parameter must be present.

Table D-6. IBM Auxiliary Device Base Format with Direct Access SDP

Offset Length Content Meaning

0 1 word Length Length of structure
(includes SDPs)

2 1 byte 0x81 Query Reply ID

3 1 byte 0x9E IBM Auxiliary
Device Query Reply

4 1 byte Bit 0

Bits 1-7 FLAGS QUERY Binary 1

RES Reserved Read Part (Query,
Query List)

IBM Auxiliary
device supports
Query

Reserved, must be
binary 0’s

5 1 byte FLAGS

Reserved 6-7 2 bytes LIMIN

Maximum DDM
bytes allowed in
inbound
transmission

8-9 2 bytes LIMOUT

Maximum DDM
bytes allowed in
outbound
transmission

10 1 byte TYPE

Table D-6. IBM Auxiliary Device Base Format with Direct Access SDP (continued)

Offset Length Content Meaning

0x01 0x02 Others Type of auxiliary
device supported

IBM auxiliary
device display

IBM auxiliary
device printer

Reserved 11

1 byte 0x04 Parameter Length 12

clii Contents

1 byte 0x01 Direct Access 13-14

1 word DOID Destination/Origin
ID assigned by the
subsystem

QUERY
This bit must be set to Binary 1 for all IBM auxiliary devices to indicate that it
supports receiving a Read Partition (Query, Query List). The host application
may then use a Read Partition directed to the auxiliary device to determine its
characteristics. The destination/origin structured field is used to direct the Read
Partition structured field to the auxiliary device.

The minimum support level for the IBM auxiliary device is to return the Null
Query Reply in response to the Read Partition.

LIMIN
States the maximum number of bytes that can be sent in an inbound
transmission. A LIMIN value of X'0000' indicates no implementation limit on
the number of bytes transmitted inbound.

LIMOUT
States the maximum number of bytes that can be sent to the IBM auxiliary
device in an outbound transmission. A LIMOUT value of 0x0000 indicates no
implementation limit on the number of bytes transmitted outbound.

TYPE
Identifies the auxiliary device being supported. Two values are valid. One
identifies an auxiliary display and the other identifies an auxiliary printer. All
other values are reserved.

The IBM auxiliary device processor supports two Self-Defining Parameters, 01
and 03. These are defined in Table D-7.

Contents cliii

Direct Access Self-Defining Parameter
This self-defining parameter provides the ID for use in the destination/origin structured field in the
direct access of the IBM auxiliary device.
This SDP is always required to accompany the base query reply.

Table D-7. IBM Auxiliary Device Direct Access SDP

Offset Length Content Meaning

0 1 byte 0x04 Parameter Length

1 1 byte 0x03 PCLK Protocol Controls

2-3 2 bytes DOID Destination/Origin ID

DOID: The value in these bytes is used in the ID field of the destination/origin structured field to
identify the auxiliary device as the destination or origin of the data which follows.

PCLK Protocol Controls Self-Defining Parameter
The presence of the PCLK Protocol Controls self-defining parameter indicates that the PCLK Protocol
Controls structured field, ID = 0x1013, can be used both inbound and outbound in data streams
destined to or from the IBM auxiliary device processor.

Table D-8. IBM Auxiliary Device PCLK SDP

Offset Length Content Meaning

0 1 byte 0x04 Parameter Length

1 1 byte 0x03 PCLK Protocol Controls

2-3 2 bytes VERS Protocol Version

VERS: The value given in VERS is used to indicate the version of PCLK installed in the terminal at
the time the query reply is returned. For example, 0x000l indicates PCLK version 1.1.
See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field
definitions for this query reply.

cliv Contents

The OEM Auxiliary Device Query Reply
The OEM Auxiliary Device Query Reply format is as follows:

Table D-9. OEM Auxiliary Device Base Format with Direct Access SDP

Offset Length Content Meaning

0 1 word 0x001A Length of structure (includes SDPs)

2 1 byte 0x81 Query Reply ID

3 1 byte 0x8F OEM Query Reply

4-5 2 bytes FLAGS Reserved

6-13 4 words DTYPE Device Type

14-21 4 words UNAME User assigned name

22 1 byte 0x04 Parameter Length

23 1 byte 0x01 Direct Access

24-25 1 word DOID Destination/Origin ID assigned by the
subsystem

See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field
definitions for this query reply.
The OEM auxiliary device processor supports two Self-Defining Parameters, 01 and 03. These are
defined in Table D-10.

Direct Access Self-Defining Parameter
This self-defining parameter provides the ID for use in the destination/origin structured field in the
direct access of the OEM auxiliary device.
This SDP is always required to accompany the base query reply.

Table D-10. OEM Auxiliary Device Direct Access SDP

Offset Length Content Meaning

0 1 byte 0x04 Parameter Length

1 1 byte 0x01 Direct Access ID

2-3 2 bytes DOID Destination/Origin ID

DOID: The value in these bytes is used in the ID field of the destination/origin structured field to
identify the auxiliary device as the destination or origin of the data which follows.

PCLK Protocol Controls Self-Defining Parameter
The presence of the PCLK Protocol Controls self-defining parameter indicates that the PCLK Protocol
Controls structured field, ID = 0x1013, can be used both inbound and outbound in data streams
destined to or from the IBM auxiliary device processor.

Table D-ll. OEM Auxiliary Device PCLK SDP

Offset Length Content Meaning

0 1 byte 0x04 Parameter Length

1 1 byte 0x03 PCLK Protocol Controls

Contents clv

2-3 2 bytes VERS Protocol Version

VERS: The value given in VERS is used to indicate the version of PCLK installed in the terminal at
the time the query reply is returned. For example, 0x000l indicates PCLK version 1.1.

clvi Contents

The Cooperative Processing Requester Query Reply
The Cooperative Processing Requester query reply is also called the SRPI query reply or the CPSI
query reply. The format is as follows:

Table D-12. CPR Query Reply Buffer Format

Offset Length Content Meaning

0 1 word Length Length of structure (includes
SDPs)

2 1 byte 0x81 Query Reply ID

3 1 byte 0xAB Query Reply Type

4-5 2 bytes FLAGS Reserved

6-7 1 word LIMIN Maximum number bytes allowed
in inbound transmission

8-9 1 word LIMOUT Maximum number bytes allowed
in outbound transmission

10 1 byte FEATL Length in bytes of the following
feature information

11-12 1 word FEATS CPR Length and feature flags

13 to (N*2)+12 0-2 bytes FEATSs Additional flags

(N*2)+12 1 byte 0x04 Length of DOID SDP

(N*2)+13 1 byte 0x01 Type for Destination/Origin ID

(N*2)+14 1 word DOID Destination/Origin ID assigned
by the subsystem

See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field
definitions for this query reply.

Contents clvii

The Product Defined Query Reply
This query reply is used by IBM products using registered subidentifiers within the X ' 9C ' data
structure. The Product Defined Data Stream query reply indicates support of a 3270DS workstation
auxiliary device which uses an IBM product defined data stream. The data stream is not defined by a
format architecture document having an identifiable control point such as an architecture review board.
When an auxiliary device supports an IBM product defined data stream, this query reply is transmitted
inbound in reply to a Query List (QCODE List = 0x9C or All).
Optional Parameters: All parameters shown in the base part of the query reply and the Direct Access
self-defining parameter must be present.
The format of the Product Defined query reply is as follows:

Table D-13. IBM Product Defined Query Reply Base Format

Offset Length Content Meaning

0 1 word Length Length of structure (includes SDPs)

2 1 byte 0x81 Query Reply ID

3 1 byte 0x9C IBM Product Defined Data Stream

4-5 2 bytes FLAGS Reserved

6 1 byte REFID Reference Identifier

7 1 byte SSID Subset Identifier

8 1 byte 0x04 Parameter Length

9 1 byte 0x01 Direct Access

10-11 1 word DOID Destination/Origin ID assigned by the
subsystem

clviii Contents

Valid values for REFID (offset 6) and SSID (offset 7) of the Product Defined query reply are as
follows:

Table D-14. IBM Product Defined Query Reply Base Format

REFID SSID Product and Data Stream Documentation

0x01 5080 Graphics System:

This reference ID indicates the 5080 Graphics System data
stream is supported by the auxiliary device. Descriptions of
the 5080 Graphics Architecture, structured fields, subset IDs,
DOID and associated function sets, are defined in the
following:

IBM 5080 Graphics System Principles of Operation

0x001 5080 HGFD Graphics Subset

0x002 5080 RS232 Ports Subset

0x02 WHIP API (replaced by SRL name when written)

This reference ID indicates that the WHIP API data stream is
supported by the auxiliary device. A description of the WHIP
API architecture is defined in the following:

IBM RT PC Workstation Host Interface Program Version 1.1
User's Guide and Reference Manual

0x001 WHIP Subset 1

0x03 to 0xFF All other values are reserved

The IBM Product Defined processor supports only the Direct Access Self-Defining Parameter. It is
defined in Table D-15.

Direct Access Self-Defining Parameter
The presence of the Direct Access ID self defining parameter indicates the auxiliary device may be
accessed directly by using the destination/origin structured field. When multiple auxiliary devices are
supported which use a product defined data stream, separate Product Defined Data Stream query
replies must be provided, each of which has a unique DOID.

Contents clix

Table D-15. IBM Product Defined Direct Access SDP

Offset Length Content Meaning

0 1 byte 0x04 Parameter Length

1 1 byte 0x03 PCLK Protocol
Controls

2-3 2 bytes DOID Destination/Origin
ID

DOID: The value in these bytes is used in the ID field of the destination/origin structured field to
identify the auxiliary device as the destination or origin of the data which follows.

The Document Interchange Architecture Query Reply
This query reply indicates the Document Interchange Architecture (DIA) function sets supported. The
format of the DIA Query Reply is as follows:

Table D-16. IBM DIA Base Format

Offset Length Content Meaning

0 1 word Length Length of structure (includes SDPs)

2 1 byte 0x81 Query Reply ID

3 1 byte 0x97 IBM Product Defined Data Stream

4-5 2 bytes FLAGS Reserved

6-7 2 bytes LIMIN Maximum message bytes allowed in
inbound transmission

8-9 2 bytes LIMOUT Maximum message bytes allowed in
outbound transmission

10 1 byte NFS Number of 3-byte function set ID's
which follow

11-13 3 bytes DIAFS DIA function set identifier

14 - (13+(N*3)) N*3 bytes DIAFSs Additional DIA function set ID's

14+(N*3) 1 byte 0x04 Parameter Length

15+(N*3) 1 byte 0x01 Direct Access

16+(N*3) 1 word DOID Destination/Origin ID assigned by the
subsystem

The DIA auxiliary device processor supports only the Direct Access Self-Defining Parameter. It is
defined in Table D-17.

clx Contents

Direct Access Self-Defining Parameter
The presence of the Direct Access ID self defining parameter indicates the auxiliary device may be
accessed directly by using the destination/origin structured field.

Table D-17. DIA Auxiliary Device Direct Access SDP

Offset Length Content Meaning

0 1 byte 0x04 Parameter Length

1 1 byte 0x01 Direct Access ID

2-3 2 bytes DOID Destination/Origin ID

DOID: The value in these bytes is used in the ID field of the destination/origin structured field to
identify the auxiliary device as the destination or origin of the data which follows.
See the IBM 3270 Information Display System Data Stream Programmer's Reference for the field
definitions for this query reply.

